MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA AGGREGATED EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA AEDR SIS)

Version 2.1
September 24, 1998

NASA
Goddard Space Flight Center Greenbelt MD 20771

MARS GLOBAL SURVEYOR

Mars Orbiter Laser Altimeter

MOLA AGGREGATED EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION
 (MOLA AEDR SIS)

Submitted:
Gregory A. Neumann
Date MOLA Science Team

Concurred:
Maria Zuber
Date
MOLA Deputy Principal Investigator

Approved:
Date
MOLA Principal Investigator

MARS ORBITER LASER ALTIMETER AGGREGATED EXPERIMENT DATA RECORD SOFTWARE INTERFACE SPECIFICATION (MOLA AEDR SIS)

Document and Change Control Log			
Date	Version	Section	Status
$03 / 31 / 97$	1.0	all	Released for MGS
$02 / 27 / 98$	2.0	all	Revised for PDS MGS CD-ROM Sampler
$09 / 24 / 98$	2.1	2.5, Appendices	Revised for PDS MOLA Archive Volume

Section
1.0 General Description 1
$1.1 \quad$ Purpose 1
$1.2 \quad$ Scope 1
1.3 Applicable Documents 1
1.4 Functional Description 1
1.4.1 Data Source, Destination, and Transfer Method 1
1.4.2 Pertinent Relationships with Other Interfaces 2
1.4.3 Labeling and Identification 2
1.4.4 Assumptions and Constraints 2
2.0 Environment 3
2.1 Hardware Characteristics and Limitations 3
2.2 Interface Medium and Characteristics 3
2.3 Input / Output Protocols 3
2.4 Failure Protection, Detection, and Recovery Features 3
2.4.1 Backup Requirements 3
2.4.2 Security and Integrity Measures 3
2.5 End-Of-File (or Medium) Conventions 3
2.6 Utility Programs 3
3.0 Data Flow Characteristics 4
3.1 Operational Characteristics 4
3.1.1 Generation Method and Frequency 4
3.1.2 Time Span of Product 4
3.2 Data Volume 4
3.3 Flow Rate 4
4.0 Detailed Data Object Definition 5
4.1 Structure and Organization Overview 5
4.2 Data Format and Definition 5
4.2.1 Format 5
4.2.2 Externally Declared Structure Templates 5
4.2.3 Data Description 5

List of Figures		Page
AEDR Label and Data Format		8
List of Tables		Page
A	AEDR Science Mode Packet Format	9
2 A	AEDR Maintenance Mode Packet Format	13
List of Appendices		Page
Appendix A	AEDR Science Mode Data Dictionary	15
Appendix B	AEDR Maintenance Mode Data Dictionary	51
Appendix C. 1	. 1 AEDR Data Product SFDU Labels and Catalog Header	57
Appendix C. 2	. 2 Contents of The MOLASCI. FMT File	58
Appendix C. 3	3 Contents of The MOLAMNT . FMT File	71
Appendix C. 4	4 Contents of The MOLASCFR. FMT File	82
Appendix C. 5	. 5 Contents of The MOLASCCT . FMT File	96

1.0 General Description

The MOLA Science Team is required to create, validate, and archive the MOLA standard data products. To define each standard data product, the MOLA Science Team is required to provide a Software Interface Specification (SIS). The SIS shall describe the data product contents and define the record and data format. The Planetary Data System's (PDS) Geosciences Node has agreed to archive the MOLA standard data products. The MOLA archive volume shall be described in a separate SIS. The MOLA standard science data products are the Aggregated Experiment Data Record-all MOLA raw data aggregated by orbit; Precision Experiment Data Record—MOLA science data processed into profiles with precision orbit locations added; Any Experiment Gridded Data Record-MOLA gridded data in 2 different densities. This SIS shall define the Aggregated Experiment Data Record (AEDR) Data Product.

1.1 Purpose

This document describes the format and contents of the AEDR data product. This includes a description of the required SFDU format and the format and contents of the AEDR.

$1.2 \quad$ Scope

This SIS describes the format of the SFDU labels and headers and the AEDR to the bit level. The AEDR file is an aggregation of the MOLA telemetry packets (Experiment Data Records) received from the Space Flight Operations Center (SFOC) at the Jet Propulsion Laboratory (JPL). The Experiment Data Records (EDRs) will be produced continuously during instrument operation. The instrument can operate in either science or maintenance mode; data is collected during each mode and stored in the telemetry packets. There are three types of maintenance (or diagnostic) modes that the instrument can be commanded to perform with varying output stored in the packet. Consequently, there are several record formats possible within the AEDR file. The formats of all record types are described in this SIS.

1.3 Applicable Documents

1. DRSE0 07 Mars Observer Software Interface Specification MOLA Packet Data Record, September 16, 1991, Jet Propulsion Laboratory
2. SFOC0038-05-12-03 SFOC Software Interface Specification SFDUs Generated/Received by TIS, November 30, 1990, Jet Propulsion Laboratory
3. MOLA-672-PL-89.354 Operations Facility Configuration and Control Plan, Version 3.0, January 15, 1992, NASA GSFC WFF
4. SFOC0088-00-04-02 SFOC User's Guide for Workstation End Users, Volume 2: Accessing Data, Version 15 (Review Copy Only)
5. SFOC0038-00-TBD-01 SFOC-2-CDB-Any-Catalog 2, Draft, February 6, 1990
6. MOLA-972-SP-92.213 MOLA CD-ROM Standard Product Archive Collection Software Interface Specification, Version 1.0, S. Slavney, R. E. Arvidson, Washington University, August 11, 1993

1.4 Functional Description

1.4.1 Data Source, Destination, and Transfer Method

The source of the telemetry packet data is SFOC through a dedicated NASA Communications
(NASCOM) link to the MOLA Science Operations Planning Computer (SOPC). The packets will be aggregated by orbit using the SFOC-provided Browser tool and stored as an AEDR file on the SOPC. Refer to Applicable Document \#3 for a description of the SOPC. The Browser tool is described in Applicable Document \#4. The AEDR files will be transferred to the MOLA operations file system via FTP (standard UNIX File Transfer Protocol). From the MOLA operations file system, the AEDR file is available for retrieval by the science team via FTP and for input to the processor to create the PEDR Data Product. The AEDR Data Product will be created by prefixing the required SFDU and PDS labeling to the AEDR file. After product verification by the MOLA Science Team, the AEDR data product shall be transferred to the SOPC for subsequent delivery to the Planetary Data System's (PDS) Geosciences Node using FTP. The PDS Geosciences Node will archive the AEDR Data Products to CD-ROM and make the products available to the science community.

1.4.2 Pertinent Relationships with Other Interfaces

Since the AEDR file is an aggregation of the MOLA Experiment Data Records (EDR), any changes to the EDR may directly affect the AEDR file.
The Precision Experiment Data Record (PEDR) Data Product is derived from the AEDR file. Therefore, any changes to the AEDR file may affect the software creating the PEDR Data Product.

1.4.3 Labeling and Identification

The AEDR data product shall be labeled according to the standards of the MGS Project and the PDS. SFDU label and header definitions and descriptions are contained in Applicable Document \#2.

The data set id for the MOLA AEDR data product is MO-M-MOLA-2-AEDR-L0-V1.0. This is the data set id that was provided to the PDB and the PDS. This id describes the overall AEDR data product. The version number is incremented should the AEDR Data Product format change.

The file naming convention for each AEDR data product produced is AA\#\#\#\#\#a.B.
Where:
A represents the MOLA instrument, an altimeter
A is the data product, AEDR, identifier
\#\#\#\#\# is the orbit number with leading zeros
a is the product edition number
B indicates the file is fixed point, binary.

1.4.4 Assumptions and Constraints

1. The AEDR product contains all MOLA telemetry packets.
2. Each AEDR retains the CHDO information contained in the corresponding EDR.
3. The AEDR product will contain one orbit of data.
4. Each record will contain one packet of MOLA data.
5. SFDU headers and labels will be attached to the AEDR file.
6. The EDR format will be maintained in the AEDR.

2.0 Environment

2.1 Hardware Characteristics and Limitations

Not applicable.

2.2 Interface Medium and Characteristics

For the creation and archival of the AEDR file, several interfaces will be necessary: SFOC-toSOPC transfer of telemetry packets (EDRs) via NASCOM link. The AEDR file shall be transferred to the MOLA operations file system for further processing to create the PEDR Data Product and for Science Team availability.

The AEDR Data Product shall be distributed to the PDS Geosciences Node for archival. The MOLA CD-ROM Archive Volume SIS, Applicable Document \#6 for the CD-ROM structure and data access information.

The interface media for file transfer and distribution are described in detail in Applicable Document \#3.

2.3 Input / Output Protocols

Not applicable.

2.4 Failure Protection, Detection, and Recovery Features

2.4.1 Backup Requirements

The AEDR data product will be backed up on magnetic media on the MOLA operations file system at GSFC. The AEDR data product will be archived by the PDS to CD-ROM. The MGS Project Data Base will be available as an additional backup location.

2.4.2 Security and Integrity Measures

Refer to Applicable Document \#3 for a description of the MOLA system security and integrity plan.

2.5 End-Of-File (or Medium) Conventions

The AEDR Data Product shall be written as a standard UNIX flat, sequential file. The end of an AEDR Data Product will be detected by the end-of-file marker. In the FORTRAN programming language, the file may be opened with the keywords ACCESS=' DIRECT' , RECL=1230 and end-of-file detected in a READ statement with the ERR= keyword.

2.6 Utility Programs

The following utilities are provided by SFOC and will be used to check the AEDR files for completeness and validity:

1. Browser
2. DECOM
3. DMD

Refer to Applicable Document \#4 for the description and the functions of these utilities.

3.0 Data Flow Characteristics

3.1 Operational Characteristics

3.1.1 Generation Method and Frequency

The process to create the AEDR data product is performed as part of MOLA mission operations. The telemetry packets will be aggregated on a Mars Global Surveyor mapping orbit basis. There will be approximately 12 orbits per day with each orbit taking 117 minutes 39 seconds to complete. The mapping mission will last for one Martian year which is 687 Earth days.

3.1.2 Time Span of Product

The AEDR data products will be produced continuously for the life of mission (687 days). Each product will contain approximately 7000 seconds of data.

3.2 Data Volume

The daily volume of telemetry data is about 8 Mbytes or approximately 6000 packets per day.

3.3 Flow Rate

Nominally, the AEDR Data Product is created on the SOPC and transferred to the MOLA operations file system once per day for the previous 24 hours of data. Since MOLA operations will be performed during a standard five day work week, on Mondays (or the first day of the work week) the processing will need to include the data collected since the last day of the previous work week.

4.0 Detailed Data Object Definition

4.1 Structure and Organization Overview

The AEDR products will be built to include the required SFDU structure. See Applicable Document \#6 for a definition of SFDUs and their structure.

4.2 Data Format and Definition

4.2.1 Format

The AEDR product will have SFDU labels and headers, as required by Mars Global Surveyor. These will be attached to the AEDR file which will contain one orbit of AEDRs.

4.2.2 Externally Declared Structure Templates

Format files describing the record format of the AEDR data product shall be provided to the Planetary Data System. The format files are referenced by the AEDR data product label. The format files are MOLASCI.FMT and MOLAMNT .FMT. These files are provided in Appendix C. 2 and Appendix C.3. Additionally, MOLASCI.FMT references the format files MOLASCFR. FMT and MOLASCCT . FMT to further describe the AEDR format. These files are provided in Appendix C. 4 and Appendix C.5.

4.2.3 Data Description

The product will be formatted as a Standard Formatted Data Unit (SFDU). This means the AEDR data shall be wrapped in a series of labels (the SFDU Primary Label, the K-Header, and the I-class Label) describing the data and supplying required information to the Project Database. An orbit of AEDRs shall make up the data portion of the file. Figure 1 depicts the overall Product format. The sections below describe each label and the data records in detail. The labels were created using Applicable Document \#5 and Applicable Document \#6 as guidelines. Label formats are provided in Appendix C.

4.2.3.1 Primary SFDU Label

The Primary SFDU Label, also known as the aggregation label, wraps and therefore, delimits the entire product. The Primary Label is 20 bytes long and shall have the following format for the AEDR Data Product. The start label is

CCSD3ZF0000100000001
where:
CCSD is the Control Authority ID
3 is the SFDU version ID
$Z \quad$ is the class ID for primary labels
F is the SFDU delimiter type, delimits product by total EOFs
0 is a spare octet
0001 is the Data Descriptive Package ID
00000001 is the delimiter value field, Total EOF Indicator Count (ASCII)

4.2.3.2 K-Header

The K-header is made up of a label and catalog data objects that are to be stored in the Mars Global Surveyor PDB. The start label has the following form:
where:

```
            NJPL is the Control Authority ID
            3 is the SFDU version ID
            K is the class ID for catalog data object labels
            S is the SFDU delimiter type, start marker
            0 is a spare octet
            PDSX is the Data Descriptive Package ID
$$INFO$$ is the delimiter value for this label
```

After the label, shall be the catalog entries required by the Project. These shall be in the KEYWORD=VALUE format. The catalog entries (keywords) that are required by the Project are

```
PDS_VERSION_ID
RECORD_TYPE
FILE_RECORDS
RECORD_BYTES
LABEL_RECORDS
FILE_NAME
DATA_SET_ID
PRODUCT_ID
SPACECRAFT_NAME
INSTRUMENT_ID
INSTRUMENT_NAME
TARGET_NAME
SOFTWARE_NAME
```

```
UPLOAD_ID
PRODUCT_RELEASE_DATE
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
SPACECRAFT_CLOCK_STOP_COUNT
PRODUCT_CREATION_TIME
MISSION_PHASE_NAME
ORBIT_NUMBER
PRODUCER_ID
PRODUCER_FULL_NAME
PRODUCER_INSTITUTION_NAME
DESCRIPTION
```

Example catalog entries and their values are provided in Appendix C.1.
The catalog entries will be delimited by the K-header end label; it has the following form:
CCSD \$ \$MARKER\$\$ INFO\$\$

4.2.3.3 I-class Label

The I-class Label precedes the actual data in the SFDU. This label is also known as the data object label or the tertiary header. The I-class label is registered individually with the JPL Control Authority and bears a unique DDPID. The start label has the following format

NJPL3IF0000000000001
where:
NJPL is the Control Authority ID
3 is the SFDU version ID
I is the class ID for data labels
F is the SFDU delimiter type, delimits by total EOFs
0 is a spare octet
0000 is the Data Descriptive Package ID
00000001 is the delimiter value field, Total EOF Indicator Count (ASCII)

4.2.3.4 Data Format

The data is written sequentially. Each record will contain one packet of MOLA telemetry dataeither science or maintenance mode and its corresponding CHDO header. The MOLA telemetry data is described in Applicable Document \#1. This document also defines the CHDO header format. Byte 11 in each AEDR indicates the mode for the packet: 0 indicates normal science mode; 1 , 2 , or 3 indicate maintenance (diagnostic) mode. To date, values 4 and above have not been assigned. Table 1 and Table 2 describe the record formats for the Aggregated Experiment Data Record (AEDR) MOLA Science Mode Packet and the Aggregated Experiment Data Record (AEDR) MOLA Maintenance Mode Packet. The tables define the record format to the bit level. The tables define the starting byte for each data element in the record. Refer to the AEDR data dictionaries in Appendix A and Appendix B for detailed descriptions and formats of the data elements in each record.

FIGURES

Figure 1: AEDR Data Product Structure and Organization

TABLES

Table 1: AEDR Science Mode Packet Format

$\begin{gathered} \text { Star } \\ \text { t } \\ \text { Byte } \end{gathered}$	Data Elements			Length (bits)	Length (bytes)
0	CHDO header			1200	150
150	Source primary header			48	6
156	Time code words			40	5
161	Packet Type ($0=$ normal science $)$	Mux	Chan	8	1
162	Computer Memory temperature	A	2	8	1
163	Computer CPU temperature	A	1	8	1
164	Power Supply temperature	A	4	8	1
165	Computer I/O temperature	A	3	8	1
166	LASER array heat sink temperature	A	6	8	1
167	LASER diode array drive electronics temperature	A	5	8	1
168	Optical Test Source (OTS) LED temperature	A	8	8	1
169	100 MHz Oscillator temperature	A	7	8	1
170	Start Detector temperature	A	10	8	1
171	Outside Detector Box temperature	A	9	8	1
172	LASER Radiator Opposite Output port temperature	A	12	8	1
173	LASER Radiator Output port temperature	A	11	8	1
174	Interface Plate near "hot foot" temperature	A	14	8	1
175	Radiation sheet transition temperature	A	13	8	1
176	Electronics Box top near S/C thermistor temperature	A	16	8	1
177	LASER Box near "hot foot" temperature	A	15	8	1
178	28 Volt monitor	B	2	8	1
179	Reference Voltage monitor	B	1	8	1
180	+12 Volt voltage monitor	B	4	8	1
181	+24 Volt voltage monitor	B	3	8	1
182	+5 Volt voltage monitor	B	6	8	1
183	-12 Volt voltage monitor	B	5	8	1
184	LASER / thermal current monitor	B	8	8	1
185	-5 Volt voltage monitor	B	7	8	1
186	Power Supply current monitor	B	10	8	1
187	High Voltage current monitor	B	9	8	1
188	-12 Volt current monitor	B	12	8	1
189	+12 Volt current monitor	B	11	8	1
190	-5 Volt current monitor	B	14	8	1
191	+5 Volt current monitor	B	13	8	1

Table 1: AEDR Science Mode Packet Format (Continued)

$\begin{gathered} \text { Star } \\ \text { t } \\ \text { Byte } \end{gathered}$	Data Elements	Length (bits)	Length (bytes)
192	Current STATUS register value (SEU counter)	8	1
193	Software Version Number (4.4 bit format)	8	1
194	Flag word (2 KB RAM block test)	16	2
196	Status Flags (EFLAG1(16 bits),EFLAG2(16 bits))	32	4
200	Software validity checksum	16	2
202	Received command count (modulo 8 bits)	8	1
203	Command error count (modulo 8 bits)	8	1
204	Transmitter threshold setting (XMITDA)	8	1
205	Range Tracking Status (frame \#7654321) (1=tracking, $0=$ acquisition, MSB=OTS)	8	1
206	Range gate tracker array (73.728 km starting at HSTART)	384	48
254	HSTART value for HISTOGRAM dump	16	2
256	Valid commands received count (modulo 16 bits)	16	2
258	Memory dump segment (16 Kbytes/16 bytes $=1024$ packets $\sim=4$ hours)	128	16
274	Command echo	128	16
290	Packet validity checksum	16	2
292	Frame 1 / Shot 1 Range to surface (TIU counts)	16	2
294	1st channel received pulse energy (counts)	8	1
295	1st channel received Channel number / Pulse width	8	1
296	Shot 2	32	4
300	Shot 3	32	4
304	Shot 4	32	4
308	Shot 5	32	4
312	Shot 6	32	4
316	Shot 7	32	4
320	Shot 8	32	4
324	Shot 9	32	4
328	Shot 10	32	4
332	Shot 11	32	4
336	Shot 12	32	4
340	Shot 13	32	4
344	Shot 14	32	4
348	Shot 15	32	4
352	Shot 16	32	4
356	Shot 17	32	4
360	Shot 18	32	4
364	Shot 19	32	4

Table 1: AEDR Science Mode Packet Format (Continued)

Star t Byte	Data Elements	Length (bits)	Length (bytes)
368	Shot 20	32	4
372	Shot 2 LASER transmitter power	8	1
373	Shot 1 LASER transmitter power	8	1
374	Shot 4 LASER transmitter power	8	1
375	Shot 3 LASER transmitter power	8	1
376	Shot 6 LASER transmitter power	8	1
377	Shot 5 LASER transmitter power	8	1
378	Shot 8 LASER transmitter power	8	1
379	Shot 7 LASER transmitter power	8	1
380	Shot 10 LASER transmitter power	8	1
381	Shot 9 LASER transmitter power	8	1
382	Shot 12 LASER transmitter power	8	1
383	Shot 11 LASER transmitter power	8	1
384	Shot 14 LASER transmitter power	8	1
385	Shot 13 LASER transmitter power	8	1
386	Shot 16 LASER transmitter power	8	1
387	Shot 15 LASER transmitter power	8	1
388	Shot 18 LASER transmitter power	8	1
389	Shot 17 LASER transmitter power	8	1
390	Shot 20 LASER transmitter power	8	1
391	Shot 19 LASER transmitter power	8	1
392	Shot 3 Encoder start and stop bits	4	0.5
392.5	Shot 4 Encoder start and stop bits	4	0.5
393	Shot 1 Encoder start and stop bits	4	0.5
393.5	Shot 2 Encoder start and stop bits	4	0.5
394	Shot 7 Encoder start and stop bits	4	0.5
394.5	Shot 8 Encoder start and stop bits	4	0.5
395	Shot 5 Encoder start and stop bits	4	0.5
395.5	Shot 6 Encoder start and stop bits	4	0.5
396	Shot 11 Encoder start and stop bits	4	0.5
396.5	Shot 12 Encoder start and stop bits	4	0.5
397	Shot 9 Encoder start and stop bits	4	0.5
397.5	Shot 10 Encoder start and stop bits	4	0.5
398	Shot 15 Encoder start and stop bits	4	0.5
398.5	Shot 16 Encoder start and stop bits	4	0.5
399	Shot 13 Encoder start and stop bits	4	0.5

Table 1: AEDR Science Mode Packet Format (Continued)

Star t Byte	Data Elements	Length (bits)	Length (bytes)
399.5	Shot 14 Encoder start and stop bits	4	0.5
400	Shot 19 Encoder start and stop bits	4	0.5
400.5	Shot 20 Encoder start and stop bits	4	0.5
401	Shot 17 Encoder start and stop bits	4	0.5
401.5	Shot 18 Encoder start and stop bits	4	0.5
402	TIU upper range bits	4	0.5
402.5	Receiver channel mask status (ALTMOD)	4	0.5
403	Algorithm status (HIT_CNT)	8	1
404	Channel 1 1st half-frame threshold setting	8	1
405	Channel 2 1st half-frame threshold setting	8	1
406	Channel 3 1st half-frame threshold setting	8	1
407	Channel 4 1st half-frame threshold setting	8	1
408	Channel 1 2nd half-frame threshold setting	8	1
409	Channel 2 2nd half-frame threshold setting	8	1
410	Channel 3 2nd half-frame threshold setting	8	1
411	Channel 4 2nd half-frame threshold setting	8	1
412	Range delay	16	2
414	Range width	16	2
416	Algorithm status (MIN_HITS)	8	1
417	Software status (frame counter in upper 4 bits, trigger channel in lower 4 bits)	8	1
418	Channel 1 1st half-frame background count (PLog base 25.3 bit format)	8	1
419	Channel 2 1st half-frame background count	8	1
420	Channel 3 1st half-frame background count	8	1
421	Channel 4 1st half-frame background count	8	1
422	Channel 1 2nd half-frame background count	8	1
423	Channel 2 2nd half-frame background count	8	1
424	Channel 3 2nd half-frame background count	8	1
425	Channel 4 2nd half-frame background count	8	1
426	Frame 2	1072	134
560	Frame 3	1072	134
694	Frame 4	1072	134
828	Frame 5	1072	134
962	Frame 6	1072	134
1096	Frame 7	1072	134
1230	TOTALS	9840	1230

Table 2: AEDR Maintenance Mode Packet Format

Start Byte	Data Elements	Length (bits)	Length (bytes)
0	CHDO	1200	150
150	Source primary header	48	6
156	Time code words	40	5
161	Packet type ($1=$ status packet, $2=$ memory dump, $3=$ noise count $)$	8	1
162	Comp. Memory Temperature	8	1
163	Comp. CPU temp.	8	1
164	Power Supply temp.	8	1
165	Comp. I/O temp.	8	1
166	LASER array sink heat temp.	8	1
167	LASER diode array drive temp.	8	1
168	Optical Test Source (OTS) LED temp.	8	1
169	100 MHz Osc. temp.	8	1
170	Start Detector temp.	8	1
171	Outside Detector box temp.	8	1
172	LASER Radiator Opposite Output port temp.	8	1
173	LASER Radiator Output port temp.	8	1
174	I/F Plate near "hot foot" temp.	8	1
175	Radiation sheet transition temp.	8	1
176	Electronics Box top near S/C thermistor temp.	8	1
177	LASER Box near "hot foot" temp.	8	1
178	28V Monitor	8	1
179	Reference Voltage monitor	8	1
180	+12 V mon.	8	1
181	24 V mon.	8	1
182	+5 V mon.	8	1
183	-12V mon.	8	1
184	LASER/thermal current mon.	8	1
185	-5V mon.	8	1
186	PS current mon.	8	1
187	HV current mon.	8	1
188	-12V current mon.	8	1
189	+12 V current mon.	8	1
190	-5V current mon.	8	1
191	+5 V current mon.	8	1
192	STATUS register value (SEU counter)	8	1
193	Software Version 4.4 bit format	8	1
194	Flag word (2 KB RAM block test)	16	2

Table 2: AEDR Maintenance Mode Packet Format (Continued)

Start Byte	Data Elements	Length (bits)	Length (bytes)
196	Command count (Parameter Updates)	16	2
198	Command count (Memory Loads)	16	2
200	Command count (Memory Dumps)	16	2
202	Command errors	16	2
204	Status flags	16	2
206	Sub-command errors	16	2
208	Commands received	16	2
210	Command echo	1232	154
364	Memory Dump Start Address	16	2
366	Memory Dump Length	16	2
368	Memory Dump Segment	6880	860
1228	Packet Checksum	16	2
1230	Total	9840	1230

Appendix A AEDR File Science Mode Data Dictionary

Version 6.0, 9/26/96

ENTRY_NAME	= "Packet CHDO"
COMMENTS packet by the	= "The compressed header data object applied to the etry Input System (TIS); 150 bytes"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/02/92
DATE_MODIFIED	= 12/02/92
FIELD_NAME	$=\mathrm{CHDO}$
FIELD_FORMAT	= "150 bytes"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "1200-bit, unsigned"
RANGE	= "N/A"
DISCRETE_VALUES	= "N/A"
COMPOSITION	$=\mathrm{CHDO}$
DATA_TYPE	= "INTEGER"
ACCURACY	= "N/A"
PRECISION	= "N/A"
DATA_RATE	= "once per 14-seconds"
UNITS	= "N/A"
ENTRY_NAME	= "Packet source header"
```COMMENTS the Payload Dat of creation of```	= "The primary source information header applied by stem (PDS) to the MOLA telemetry packet at the time packet prior to transfer frame creation."
ALIAS	= "telemetry packet header, primary header"
AUTHOR	= "Garvin, Hancock, Northam, and Jester"
ENTRY_TYPE	= "GROUP"
DATE_CREATED	= 03/17/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= P_SHDR
FIELD_FORMAT	= "3I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "48-bit, unsigned"
RANGE	= "N/A"
DISCRETE_VALUES	= "N/A"
COMPOSITION	= " PKT_ID + SEQ_CTRL + PKT_LEN"
DATA_TYPE	= "INTEGER"
ACCURACY	= "N/A"
PRECISION	= "N/A"
DATA_RATE	$=$ "once per 14-seconds"
UNITS	= "N/A"
ENTRY_NAME	= "Packet ID"
COMMENTS   the packet."	= "Identifies the format and originating source of
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "GROUP"
DATE_CREATED	= 12/07/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= PKT_ID
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"


BINARY_VALUES	= "16-bit, unsigned"
RANGE	$=0: 65535$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= " VERS_NUM + SPARE + FLAG + APPL_ID"
DATA_TYPE	= "INTEGER"
ACCURACY	= "N/A"
PRECISION	= "N/A"
DATA_RATE	= "once per 14-seconds"
UNITS	$=$ "N/A"
ENTRY_NAME	= "Version number"
COMMENTS	= "These bits identify Version 1 as the Source
Packet structu	These bits shall be set to '000'."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 07 / 90$
DATE_MODIFIED	= 09/24/91
FIELD_NAME	= VERS_NUM
FIELD_FORMAT	= "3 bits (0-2)"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "UNSIGNED"
RANGE	= 0:7
DISCRETE_VALUES	$=\{0\}$
COMPOSITION	= VERS_NUM
DATA_TYPE	= "INTEGER"
ACCURACY	= "N/A"
PRECISION	= "N/A"
DATA_RATE	= "once per 14 seconds"
UNITS	= "N/A"
ENTRY_NAME	= "Spare"
COMMENTS	= "Reserved spare. This bit shall be set to '0'."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 07 / 90$
DATE_MODIFIED	= 09/24/91
FIELD_NAME	= SPARE
FIELD_FORMAT	= "1 bit (3)"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "UNSIGNED"
RANGE	$=0: 0$
DISCRETE_VALUES	$=\{0\}$
COMPOSITION	$=$ SPARE
DATA_TYPE	= "INTEGER"
ACCURACY	= "N/A"
PRECISION	= "N/A"
DATA_RATE	= "once per 14 seconds"
UNITS	= "N/A"
ENTRY_NAME	= "Flag"
COMMENTS	= "This flag signals the presence or absence of a
Secondary Heade	data structure within the Source Packet. This bit

```
 shall be set to '0' since no Secondary Header formatting standards
 currently exist for Mars Global Surveyor."
ALIAS = "Secondary header flag"
AUTHOR = "Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/07/90
DATE_MODIFIED = 09/24/91
FIELD_NAME = FLAG
FIELD_FORMAT = "1 bit (4)"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "UNSIGNED"
RANGE = 0:0
DISCRETE_VALUES = {0}
COMPOSITION = FLAG
DATA_TYPE = "INTEGER"
ACCURACY = "N/A"
PRECISION = "N/A"
DATA_RATE = "once per 14 seconds"
UNITS = "N/A"
ENTRY_NAME = "Application ID"
 COMMENTS = "This field uniquely identifies the individual
 application process within the spacecraft that created the Source
 Packet data."
 ALIAS = "Application Process ID"
 AUTHOR = "Jester"
 ENTRY_TYPE = "GROUP"
 DATE_CREATED = 12/07/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = APPL_ID
 FIELD_FORMAT = "11 bits (5 - 15)"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "N/A"
 RANGE = "N/A"
 DISCRETE_VALUES = "N/A"
 COMPOSITION = "ERR_STAT + INSTR_ID"
 DATA_TYPE = "INTEGER"
 ACCURACY = "N/A"
 PRECISION = "N/A"
 DATA_RATE = "once per 14 seconds"
 UNITS = "N/A"
ENTRY_NAME
 fill packet data generated when a MOLA packet is incomplete."
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = ERR_STAT
 FIELD_FORMAT = "3 bits (5-7)"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "UNSIGNED"
```

```
RANGE = 0:7
 DISCRETE_VALUES = N/A
 COMPOSITION = ERR_STAT
 DATA_TYPE = "INTEGER"
 ACCURACY = "N/A"
 PRECISION = "N/A"
 DATA_RATE = "once per 14 seconds"
 UNITS = "N/A"
ENTRY_NAME = "Instrument ID"
 COMMENTS = "00100011 is the bit pattern for MOLA"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = INSTR_ID
 FIELD_FORMAT = "8 bits (8-15)"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "UNSIGNED"
 RANGE = "N/A"
 DISCRETE_VALUES = {00100011 (35)}
 COMPOSITION = INSTR_ID
 DATA_TYPE = "INTEGER"
 ACCURACY = "N/A"
 PRECISION = "N/A"
 DATA_RATE = "once per 14 seconds"
 UNITS = "N/A"
ENTRY_NAME = "Sequence control"
 COMMENTS = "N/A"
 ALIAS = "Packet sequence control"
 AUTHOR = "Jester"
 ENTRY_TYPE = "GROUP"
 DATE_CREATED = 12/06/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = SEQ_CTRL
 FIELD_FORMAT = I*2
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "16-bit, unsigned"
 RANGE = "N/A"
 DISCRETE_VALUES = "N/A"
 COMPOSITION = "SEG_FLAG + SEQ_CNT"
 DATA_TYPE = "INTEGER"
 ACCURACY = "N/A"
 PRECISION = "N/A"
 DATA_RATE = "once per 14-seconds"
 UNITS = "N/A"
ENTRY_NAME = "Segmentation Flag"
 COMMENTS = "For Mars Global Surveyor segmentation shall not
 occur. These bits shall be set to '11'."
 ALIAS = "N/A"
 AUTHOR = "Jester"
```

```
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/07/90
DATE_MODIFIED = 09/24/91
FIELD_NAME = SEG_FLAG
FIELD_FORMAT = "2 bits (0-1)"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "UNSIGNED"
RANGE = "N/A"
DISCRETE_VALUES = {11 (3)}
COMPOSITION = SEG_FLAG
DATA_TYPE = "INTEGER"
ACCURACY = "N/A"
PRECISION = "N/A"
DATA_RATE = "once per 14 seconds"
UNITS = "N/A"
ENTRY_NAME
 (modulo 16384) of each packet generated by the MOLA application process
 on the spacecraft. The purpose of the field is to order this packet
 with respect to other packets from the same application process. The
 last four bits are the counter into the OTS array in the Parameter
 Table."
 ALIAS = "Source sequence count"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/07/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = SEQ_CNT
 FIELD_FORMAT = "14 bits (2-15)"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "UNSIGNED"
 RANGE = 0:16383
 DISCRETE_VALUES = "N/A"
 COMPOSITION = SEQ_CNT
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once per 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME
 count 'C' of the length (in octets) of the data area structure that is
 enclosed between the first bit of the Secondary Header and the last bit
 of the packet (i.e., the last bit of the Source Data field). C = ((no.
 of octets) - 1)"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/06/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = PKT_LEN
 FIELD_FORMAT = "I*2"
```





ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/10/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= CPU_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= CPU_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Power Supply temperature"
COMMENTS	= "Mux A, Ch \#4"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= PS_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= PS_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Computer I/O temperature"
COMMENTS	= "Mux A, Ch \#3"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= IO_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= IO_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"


PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	$=$ "LASER array heat sink temperature"
COMMENTS	= "Mux A, Ch \#6"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/10/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= LARY_TEMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= AHS_TEMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "LASER diode array drive electronics temperature"
COMMENTS	= "Mux A, Ch \#5"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= DADE_TEMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= LDRV_TEMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Optical Test Source (OTS) LED temperature"
COMMENTS	= Mux A, Ch \#8
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= LED_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"


BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= LED_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "100 MHz Oscillator temperature"
COMMENTS	= Mux A, Ch \#7
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= OSC_TMP
FIELD_FORMAT	= " I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= OSC_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Start detector temperature"
COMMENTS	= "Mux A, Ch \#10"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= SD_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	= 0:255
DISCRETE_VALUES	= "N/A"
COMPOSITION	= SD_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Outside Detector Box temperature"
COMMENTS	= Mux A, Ch \#9
ALIAS	= "N/A"
AUTHOR	= "Jester"

```
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/10/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = DH_TMP
FIELD_FORMAT = "I*1"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "8 bit, unsigned"
RANGE = 0:255
DISCRETE_VALUES = "N/A"
COMPOSITION = DB_TMP
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once / 14 seconds"
UNITS = "COUNTS"
ENTRY_NAME = "LASER Radiator opposite output port temperature"
 COMMENTS = Mux A, Ch #11
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = LOPP_TMP
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = LOPP_TMP
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME = "LASER Radiator output port temperature"
 COMMENTS = "Mux A, Ch #11"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = LOUT_TMP
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = LOUT_TMP
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
```

UNITS	$=$ "COUNTS"
ENTRY_NAME	= "Interface Plate near 'hot foot' temperature"
COMMENTS	= "Mux A, Ch \#14"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	$=15 _T M P$
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	= 0:255
DISCRETE_VALUES	= "N/A"
COMPOSITION	= IF_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Radiation sheet transition temperature"
COMMENTS	= "Mux A, Ch \#13"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= HP_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	= 0:255
DISCRETE_VALUES	= "N/A"
COMPOSITION	= RST_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME temperature"	= "Electronics Box top near S/C thermistor
COMMENTS	= "Mux A, Ch \#16"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/10/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= EB_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"


RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	$=\mathrm{EB}$ _TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "LASER Box near 'hot foot' temperature"
COMMENTS	= "Mux A, Ch \#15"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	$=$ LB_TMP
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= LB_TMP
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "28 Volt monitor"
COMMENTS	= "Mux B, Ch \#2"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= P28V_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	$=$ "N/A"
COMPOSITION	= P28V_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Reference Voltage monitor"
COMMENTS	= "Mux B, Ch \#1"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"

```
DATE_CREATED = 12/10/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = RV_MN
FIELD_FORMAT = "I*1"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "8 bit, unsigned"
RANGE = 0:255
DISCRETE_VALUES = "N/A"
COMPOSITION = RV_MN
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once / 14 seconds"
UNITS = "COUNTS"
ENTRY_NAME = "+12 Volt voltage monitor"
 COMMENTS = "Mux B, Ch #4"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = P12V_MN
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = P12V_MN
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME = "24 Volt voltage monitor"
 COMMENTS = "Mux B, Ch #3"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = P24V_MN
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = P24V_MN
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
```

ENTRY_NAME	$=$ "+5 Volt voltage monitor"
COMMENTS	= "Mux B, Ch \#6"
ALIAS	$=\mathrm{N} / \mathrm{A}$ "
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/10/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= P5V_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= P5V_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "-12 Volt voltage monitor"
COMMENTS	= "Mux B, Ch \#5"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= N 12 V _MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= N12V_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "LASER / thermal current monitor"
COMMENTS	= "Mux B, Ch \#8"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	$=$ LTC_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	= 0:255
DISCRETE_VALUES	= "N/A"


COMPOSITION	= LTC_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "-5 Volt voltage monitor"
COMMENTS	= "Mux B, Ch \#7"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= N5V_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	= 0:255
DISCRETE_VALUES	= "N/A"
COMPOSITION	= N5V_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Power Supply current monitor"
COMMENTS	= "Mux B, \#10"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/10/90
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= PSC_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= PSC_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "High Voltage current monitor"
COMMENTS	= "Mux B, Ch \#9"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$

```
 FIELD_NAME = HV_MON
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = HV_MON
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME = "-12 Volt current monitor"
 COMMENTS = "Mux B, Ch #12"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = N12VC_MN
 FIELD_FORMAT = "I*1
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = N12VC_MN
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME = "+12 Volt current monitor"
 COMMENTS = "Mux B, Ch #11"
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/10/90
 DATE_MODIFIED = 08/20/91
 FIELD_NAME = P12VC_MN
 FIELD_FORMAT = "I*1"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "8 bit, unsigned"
 RANGE = 0:255
 DISCRETE_VALUES = "N/A"
 COMPOSITION = P12VC_MN
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / 14 seconds"
 UNITS = "COUNTS"
ENTRY_NAME = "-5 Volt current monitor"
```

COMMENTS	= "Mux B, Ch \#14"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	$=$ N5VC_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= N5VC_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "+5 Volt current monitor"
COMMENTS	= "Mux B, Ch \#13"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 10 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= P5VC_MN
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	$=$ "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= P5VC_MN
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Current STATUS register value (SEU counter)"
```COMMENTS collection cycl = SEU counter```	$=$ "Value read from STATUS register at end of packet Read STATUS register and store lower 8 bits. MSnibble "
ALIAS cycle"	$=$ "STATUS register at end of packet collection
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 11 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= SEU_CTR
FIELD_FORMAT	= "I*1"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "8 bit, unsigned"
RANGE	$=0: 255$

```
DISCRETE_VALUES = "N/A"
COMPOSITION = SEU_CTR
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once / 14 seconds"
UNITS = "COUNTS"
ENTRY_NAME = "Software Version Number (4.4 bit format)"
    COMMENTS = "4.4 bit format version number. Version number is
        hard coded in software and is stored in packet at the end of the packet
        collection cycle. Any software patches should include an update to this
    value. Current flight version is 5.3 therefore, 53h is hard coded in
    the Pack_it() routine of the Science Mode. Maintenance Mode version is
    6.2 therefore 62h is coded."
ALIAS = "N/A"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/11/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = SW_VER
FIELD_FORMAT = "I*2"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "8 bit, unsigned"
RANGE = 0:255
DISCRETE_VALUES = "N/A"
COMPOSITION = SW_VER
DATA_TYPE = "INTEGER"
ACCURACY = "N/A"
PRECISION = "N/A"
DATA_RATE = "once / 14 seconds"
UNITS = "N/A"
ENTRY_NAME = "Flag word (2 KB RAM block test)"
    COMMENTS = "RAM block test flag word. Memory test results.
        Bit representation of the results of the RAM write/read/verify block
        test performed after a CPU reset (HOT or COLD start). MSB (#15)
        represents the memory block from 7800h to 7FFFh; LSB (#0) from 0000h to
        7FFh. 1 = error detected, 0 = block O.K. {jbb - A 0 represents a
        validated block, while a 0 (1?) means that the program encountered an
        invalid compare on at least one byte in that block area. B[0] is bits
        15 - 8 of RAM test flag; B[1] is bits 7 - 0 of RAM test flag"
    ALIAS = "RAM block test flag word"
    AUTHOR = "Blair, Jester"
    ENTRY_TYPE = "ELEMENT"
    DATE_CREATED = 12/11/90
    DATE_MODIFIED = 08/20/91
    FIELD_NAME = RAMTEST
    FIELD_FORMAT = "I*2"
    ALLOW_BLANKS = "N/A"
    BINARY_VALUES = "16 bit, unsigned"
    RANGE = 0:65535
    DISCRETE_VALUES = "N/A"
    COMPOSITION = RAMTEST
```


DATE_CREATED	$=12 / 11 / 90$
DATE_MODIFIED	$=08 / 20 / 91$
FIELD_NAME	= R_BIN_HG
FIELD_FORMAT	= "48 1 byte bins"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "384 bits, unsigned"
RANGE	$=0: 255$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= R_BIN_HG
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "HSTART value for HISTOGRAM dump"
COMMENTS packet complet HSTART is used (2 seconds ear pointer, there LSByte of HSTA	= "Value of HSTART from Parameter table, stored at Stored at the end of the packet collection cycle. tore the Histogram dump bins on the previous frame . HSTART is right shifted one bit and used as a word its LSB is cleared. B[0] = MSByte of HSTART; B[1] =
ALIAS	= "N/A"
AUTHOR	= "Blair, Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/11/90
DATE_MODIFIED	= 08/20/91
FIELD_NAME	$=$ HSTART
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bits, unsigned"
RANGE	$=0: 65535$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "HSTART"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / 14 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	$=$ "Valid commands received count (modulo 16 bits)"
COMMENTS channel on/off 16 bit counter OFFFFh to 0. V commands and P validity - inv errors). All o or cause a mod valid cmd coun	$=$ "Number of Time broadcast and Parameter update and ands executed, never cleared, init. $=0$. This is a starts at 0 after a CPU reset and rolls over from MOLA specific commands are defined as Channel ON/OFF ter Update command (irregardless of parameter offset offsets are flagged and counted as Subcommand MOLA specific commands are either flagged as errors nge or CPU reset. B[0] = MSByte and B[1] = LSByte of
ALIAS	= "\# valid MOLA specific commands"
AUTHOR	= "Blair, Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 11 / 90$

 ((SEQUENCE \& 0x3FFh)*16), dumps 0 - 3FFFh then starts again at 0. Using the lower 11 bits of the SEQUENCE count, stored in this packet, multiplied by 16 as the starting byte address, 8 words are read from RAM and stored in the packet. The following denotes the memory address at each data byte (B[x]). C = ((SEQUENCE \& 0x3FFF) *16).
$B[0]: C+1 ; B[1]: C+0 ; B[2]: C+3 ; B[3]: C+2 ;$
$\mathrm{B}[4]: \mathrm{C}+5 ; \mathrm{B}[5]: \mathrm{C}+4 ; \mathrm{B}[6]: \mathrm{C}+7$; $\mathrm{B}[7]: \mathrm{C}+6$;
$\mathrm{B}[8]: \mathrm{C}+9$; $\mathrm{B}[9]: \mathrm{C}+8 ; \mathrm{B}[10]: \mathrm{C}+11 ; \mathrm{B}[11]$: $\mathrm{C}+10$;
$\mathrm{B}[12]: \mathrm{C}+13$; $\mathrm{B}[13]: \mathrm{C}+12$; $\mathrm{B}[14]$: $\mathrm{C}+15$; $\mathrm{B}[15]$: $\mathrm{C}+14{ }^{\prime \prime}$
ALIAS $=$ "Ram dump portion"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED $=12 / 11 / 90$
DATE_MODIFIED $=08 / 20 / 91$
FIELD_NAME $=$ MEM_DUMP
FIELD_FORMAT $=$ "16 1 byte values"
ALLOW_BLANKS $=$ "N/A"
BINARY_VALUES $=$ "128 bits, unsigned"
RANGE $=0: 255$
DISCRETE_VALUES $=$ "N/A"
COMPOSITION = "MEM_DUMP"
DATA_TYPE = "INTEGER"
ACCURACY $=$ "UNK"
PRECISION $=$ "N/A"
DATA_RATE $=$ "once / 14 seconds"
UNITS $=$ "N/A"
$\begin{array}{ll}\text { ENTRY_NAME } & =\text { "Command echo" } \\ \text { COMMENTS } & =\text { "First } 8 \text { command words received during current }\end{array}$ packet, only complete commands are stored, MOLA specific commands only. The software attempts to echo all valid commands. If the command will fit in the room remaining in the buffer, then it is stored and that much room is removed from that which remains in the echo buffer. If a command will not fit, then a buffer overflow is flagged, but subsequent commands that will fit are still stored in the buffer. B[0]: MSB of command word (CW) \#1;B[1]: LSB of CW\#1;B[2]: MSB of CW\#2;B[3]: LSB of CW\#2;B[4]: MSB of CW\#3;B[5]: LSB of CW\#3; B[6]: MSB of CW\#4;B[7]: LSB of CW\#4;B[8]: MSB of CW\#5;B[9]: LSB of CW\#5;B[10]: MSB of CW\#6;B[11]:

```
    LSB of CW#6;B[12]: MSB of CW#7; B[13]: LSB of CW#7;B[14]: MSB of
    CW#8;B[15]: LSB of CW#8. NOTE: The command echo buffer is filled with
    zeros at the start of each packet."
ALIAS = "Echo valid commands"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/11/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = CMD_ECHO
FIELD_FORMAT = "8 I*2 words"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "128 bits, unsigned"
RANGE = 0:65535
DISCRETE_VALUES = "N/A"
COMPOSITION = CMD_ECHO
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "N/A"
DATA_RATE = "once / 14 seconds"
UNITS = "N/A"
ENTRY_NAME = "Packet validity checksum"
    COMMENTS = "Simple 16 bit addition of entire packet contents
    upon completion. This location is zeroed for addition. This word is
    zeroed, then words 0-539 are added without carry to a variable that is
    initially zero. The resulting lower 16 bits are stored in this
    location. To verify, read, store, and clear this location. Then, word
    add without carry these }540\mathrm{ words and compare the lower 16 bits with
    the stored value."
ALIAS = "N/A"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/11/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = PKT_CKSM
FIELD_FORMAT = "I*2"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "16 bit, unsigned"
RANGE = 0:65536
DISCRETE_VALUES = "N/A"
COMPOSITION = PKT_CKSM
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once / 14 seconds"
UNITS = "N/A"
ENTRY_NAME = "Frame /Shot data"
    COMMENTS = "For each of }7\mathrm{ frames, the good laser data out of
    20 laser shots per frame."
ALIAS = "N/A"
    AUTHOR = "Jester"
    ENTRY_TYPE = "GROUP"
    DATE_CREATED = 08/20/91
```



```
ENTRY_NAME = "Encoder Bits"
    COMMENTS = "The start and stop encoder bits for each shot.
        Applied to range to surface counts to get a more precise range value. A
        set of 20 half-byte values, one for each laser shot. Each byte contains
        values for an odd and an even numbered shot. Per byte = Bit 7 - 6 -
        encoder stop bits for odd shots; Bit 5 - 4 - encoder start bits for odd
        shots; Bit 3 - 2 - encoder stop bits for even shots; Bit 1 - 0 -
        encoder start bits for even shots. Odd numbered SHOTs order - 3,1, 7,
        5,11, 9, 15, 13, 19, 17; Even numbered SHOTs order - 4, 2, 8, 6, 12,
        10, 16, 14, 20, 18"
    ALIAS = "Interpolator bits"
    AUTHOR = "Blair, Jester"
    ENTRY_TYPE = "ELEMENT"
    DATE_CREATED = 4/1/97
    DATE_MODIFIED = 4/1/97
    FIELD_NAME = ENC_BITS
    FIELD_FORMAT = "20 0.5 byte values"
    ALLOW_BLANKS = "N/A"
    BINARY_VALUES = "4-bit, unsigned, fixed-point"
    RANGE = 0:15
    DISCRETE_VALUES = "N/A"
    COMPOSITION = "ENC_BITS"
    DATA_TYPE = "INTEGER"
    ACCURACY = "N/A"
    PRECISION = "N/A"
    DATA_RATE = "10 per second"
    UNITS = "N/A"
ENTRY_NAME 
        time interval unit (TIU). Only the largest MSTIU value read in current
        frame is saved. Only bits 6, 5, 4 are used. With Receiver channel mask
        status (bits 3-0) below forms one byte. Will be either the values 3 or
        4."
    ALIAS = "Most significant portion of the range to surface
        measurement"
    AUTHOR = "Jester"
    ENTRY_TYPE = "ELEMENT"
    DATE_CREATED = 12/12/90
    DATE_MODIFIED = 09/24/91
    FIELD_NAME = TIU_URB
    FIELD_FORMAT = "7 0.5 byte values"
    ALLOW_BLANKS = "N/A"
    BINARY_VALUES = "4-bit, unsigned"
    RANGE = 0:7
    DISCRETE_VALUES = {3,4}
    COMPOSITION = "TIU_URB"
    DATA_TYPE = "INTEGER"
    ACCURACY = "UNK"
    PRECISION = "UNK"
    DATA_RATE = "once per 2 seconds; 7 per packet"
    UNITS = "COUNTS"
ENTRY_NAME = "Receiver channel mask status"
```

```
COMMENTS = "The altimeter channel mask settings from the
    flight parameter table at the time of acquisition and storage of the
    TIU upper range bits. The mask indicates if the channel filter is
    active or is masked out to prevent triggering the TIU. Least
    significant 4 bits of ALTSET from Parameter table; stored at same time
    as largest MSTIU. The value sent to ALTMOD in Altimeter Electronics.
    With TIU upper range bits above forms one byte. Bit 3 = Channel 1; Bit
    2 = Channel 2; Bit 1 = Channel 3; Bit 0 = Channel 4. 1 = channel on, 0
    = channel off"
ALIAS = "ALTMOD; parameter table channels enabled,
    Receiver channel mask status bits"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/12/90
DATE_MODIFIED = 08/20/91
FIELD_NAME = RC_MSK
FIELD_FORMAT = "7 0.5 bytes per packet"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "4-bit, unsigned"
RANGE = 0:15
DISCRETE_VALUES = "N/A"
COMPOSITION = "RC_MSK"
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once per 2 seconds"
UNITS = "N/A"
ENTRY_NAME = "Algorithm status (HIT_COUNT)"
    COMMENTS = "Current value from the active data frame showing
    the number of hits counted in the possible 20 shot hits in the single
        frame or the number of hits summed over the possible 100 shots when in
        the 5 frame mode. This is an indicator of the performance of the
        tracking algorithm. If in the acquisition mode, this field will contain
        the number of shot hits from a possible 80 shots within the 4 frame
        acquisition window. HIT_CNT from previous frame."
ALIAS = "Tracking algorithm hit count status"
AUTHOR = "Blair, Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/12/90
DATE_MODIFIED = 09/24/91
FIELD_NAME = AS_HCT
FIELD_FORMAT = "7 1 byte values"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "8-bit, unsigned"
RANGE = "0:20 or :80(tracking) or :80(acquisition)"
DISCRETE_VALUES = {0, 20, 80}
COMPOSITION = "AS_HCT"
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once per 2 seconds"
UNITS = "COUNTS"
```

ENTRY_NAME	"Channel half-frame threshold settings"
COMMENTS	"The active channel threshold settings in the
current frame. the first 10 sh shots. Value of	settings of the 4 channel thresholds are sampled for n the frame, and again for the final 10 frame ,2,3,4) TH during a half-frame of current frame."
ALIAS	"Receiver threshold settings"
AUTHOR	" Blair, Jester"
ENTRY_TYPE	"ELEMENT"
DATE_CREATED	12/12/90
DATE_MODIFIED	- 08/20/91
FIELD_NAME	"CH_1_TS,CH_2_TS,CH_3_TS,CH_4_TS"
FIELD_FORMAT	"8 1 byte values per frame (56 per packet)"
ALLOW_BLANKS	"N/A"
BINARY_VALUES	" "8-bit, fixed point, unsigned"
RANGE	0:255
DISCRETE_VALUES	"N/A"
COMPOSITION	("CH_1_TS,CH_2_TS,CH_3_TS,CH_4_TS"
DATA_TYPE	" ${ }^{\text {INTEGER" }}$
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	"Once per second (for each channel)"
UNITS	= "UNK"
ENTRY_NAME	= "Range delay"
COMMENTS	" Current frame range gate delay value (DELAY) as
set from the pr	us data frame. B[0] : Bits 3-0 are bits $11-8$ and
```B[1] : LSByte frame."```	$0-7$ ) of the 12 bit Range Delay setting for this
ALIAS	"range gate delay"
AUTHOR	"Blair, Jester"
ENTRY_TYPE	"ELEMENT"
DATE_CREATED	= 12/12/90
DATE_MODIFIED	= 08/20/91
FIELD_NAME	R_DELAY
FIELD_FORMAT	"I*2"
ALLOW_BLANKS	"N/A"
BINARY_VALUES	"16-bit, unsigned, fixed point"
RANGE	0:65535
DISCRETE_VALUES	"N/A"
COMPOSITION	"R_DELAY"
DATA_TYPE	"INTEGER"
ACCURACY	" "UNK"
PRECISION	= "UNK"
DATA_RATE	"once per 2 seconds"
UNITS	= COUNTS"
ENTRY_NAME	" "Range width"
COMMENTS	"Current frame range gate window or width; set at
end of the prev	data frame. B[0] : Bits 3-0 are bits $11-8$ and
B[1] : LSByte of	12 bit Range Gate Window setting for this frame."
ALIAS	"range gate width"
AUTHOR	"Blair, Jester"
ENTRY_TYPE	"ELEMENT"
DATE_CREATED	12/12/90



COMPOSITION	"FRM_CTR + SS_MHT"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once per 2 seconds"
UNITS	= "N/A"
ENTRY_NAME	= "Frame counter"
COMMENTS   data frame tra value from prev of Software sta	$=$ "The frame counter value is set from the previous   algorithm operation. Frame counter (Frame_ctr)   frame's tracking algorithm is in MS 4 bits (7-4)   Bits 7 - 4 are bits 3 - 0 of frame counter."
ALIAS	"N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=03 / 06 / 91$
DATE_MODIFIED	= 09/24/91
FIELD_NAME	= FRM_CTR
FIELD_FORMAT	= "0.5 byte"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "4-bit, unsigned, fixed-point"
RANGE	= 0:15
DISCRETE_VALUES	$=\{1,2,3,4,5,6,7\}$
COMPOSITION	= "FRM_CTR"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once per 2 seconds"
UNITS	= "COUNTS"
ENTRY_NAME	= "Trigger channel"
COMMENTS minimum hit coun algorithm oper LS 4 bits (0 Channel 2; Bit	= "The first channel triggering at or above the   s set from the previous data frame tracking   . MIN_HITS trigger channel from previous frame is in   f Software status. Bit $0=$ Channel 1; Bit $1=$   Channel 3; Bit $3=$ Channel 4"
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 03/0691
DATE_MODIFIED	= 09/24/91
FIELD_NAME	= SS_MHT
FIELD_FORMAT	= "0.5 byte"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "4-bit, unsigned, fixed-point"
RANGE	= 0:15
DISCRETE_VALUES	$=\{1,2,3,4\}$
COMPOSITION	= "SS_MHT"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once per 2 seconds"
UNITS	= "N/A"



## Appendix B The AEDR Maintenance Mode Data Dictionary

Version 3.1, 06/11/92
Note: See Appendix A, the AEDR Science Mode Data Dictionary for the description of Maintenance Mode Data Elements that occur prior to those listed here. The definition of the data elements in all packet types is the same until this point.

```
ENTRY_NAME = "Maintenance Mode Data"
 COMMENTS = "Describes the contents and format of the maintenance
 mode data. For maintenance mode status packets (packet type = 1), the contents
 of the record will be filler data starting at byte 214 to the end of the
 record. For maintenance mode memory dumps (packet type = 2), the entire record
 will be filled with valid data. For maintenance mode noise count data (packet
 type = 3), the entire record will be filled with valid data."
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "GROUP"
 DATE_CREATED =09/28/91
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = MM_DAT
 FIELD_FORMAT = "N/A"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "N/A"
 RANGE = "N/A"
 DISCRETE_VALUES = "N/A"
 COMPOSITION = "PARMUP_CC + MEMLOADS_CC + MEMDUMPS_CC + CMD_ERR +
 STAT_FLAG + SCMD_ERR + CMD_REC + CMD_ECHO + MSTART_ADD + MEMDUMP_LEN +
 MEMDUMP_SEG + P_CHECK"
 DATA_TYPE = "N/A"
 ACCURACY = "N/A"
 PRECISION = "N/A"
 DATA_RATE = "once / maintenance mode packet (14 secs.)"
 UNITS = "N/A"
ENTRY_NAME = "Command count (parameter updates)"
 COMMENTS = "Valid data for packet types 1, 2, and 3."
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/17/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = PARMUP_CC
 FIELD_FORMAT = "I*2"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "16 bit, unsigned"
 RANGE =0:65535
 DISCRETE_VALUES = "N/A"
 COMPOSITION = PARMUP_CC
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "N/A"
 DATA_RATE = "once / maintenance mode packet (14 secs.)"
 UNITS = "counts"
ENTRY_NAME = "Command count (memory loads)"
 COMMENTS = "Valid data for packet types 1, 2, and 3."
 ALIAS = "N/A"
```

AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= MEMLOADS_CC
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= MEMLOADS_CC
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "counts"
ENTRY_NAME	= "Command count (memory dumps)"
COMMENTS	= "Valid data for packet types 1, 2, and 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= MEMDUMPS_CC
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= MEMDUMPS_CC
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "count"
ENTRY_NAME	= "Command errors"
COMMENTS	= "Valid data for packet types 1, 2, and 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= 12/17/90
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= CMD_ERR
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "CMD_ERR"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "counts"
ENTRY_NAME	= "Status flags"
COMMENTS	= "Valid data for packet types 1, 2, and 3."


ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "GROUP?"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= STAT_FLAG
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "STAT_FLAG"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "UNK"
ENTRY_NAME	= "Sub-command errors"
COMMENTS	= "Valid data for packet types 1, 2, and 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= SCMD_ERR
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "SCMD_ERR"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "counts"
ENTRY_NAME	= "Commands received"
COMMENTS	= "Valid data for packet types 1, 2, and 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	= $12 / 18 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= CMD_REC
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	$=0: 65535$
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "CMD_REC"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "N/A"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "counts"
ENTRY_NAME	= "Command echo"

```
COMMENTS = "Valid data for packet types 1, 2, and 3."
ALIAS = "N/A"
AUTHOR = "Jester"
ENTRY_TYPE = "ELEMENT"
DATE_CREATED = 12/17/90
DATE_MODIFIED = 06/11/92
FIELD_NAME = CMD_ECHO
FIELD_FORMAT = "I*154"
ALLOW_BLANKS = "N/A"
BINARY_VALUES = "1232 bit, unsigned"
RANGE = "N/A"
DISCRETE_VALUES = "N/A"
COMPOSITION = "CMD_ECHO"
DATA_TYPE = "INTEGER"
ACCURACY = "UNK"
PRECISION = "UNK"
DATA_RATE = "once / maintenance mode packet (14 secs.)"
UNITS = "UNK"
ENTRY_NAME = "Memory dump start address"
 COMMENTS = "Valid data for packet type 2. Filler data for packet type
 1. Noise count data for packet type 3."
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/17/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = MSTART_ADD
 FIELD_FORMAT = "I*2"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "16 bit, unsigned"
 RANGE =0:65535
 DISCRETE_VALUES = "N/A"
 COMPOSITION = "MSTART_ADD"
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / maintenance mode packet (14 secs.)"
 UNITS = "UNK"
ENTRY_NAME
 1. Noise count data for packet type 3."
 ALIAS = "N/A"
 AUTHOR = "Jester"
 ENTRY_TYPE = "ELEMENT"
 DATE_CREATED = 12/17/90
 DATE_MODIFIED = 06/11/92
 FIELD_NAME = MEMDUMP_LEN
 FIELD_FORMAT = "I*2"
 ALLOW_BLANKS = "N/A"
 BINARY_VALUES = "16 bit, unsigned"
 RANGE =0:65535
 DISCRETE_VALUES = "N/A"
 COMPOSITION = "MEMDUMP_LEN"
 DATA_TYPE = "INTEGER"
 ACCURACY = "UNK"
 PRECISION = "UNK"
 DATA_RATE = "once / maintenance mode packet (14 secs.)"
```

UNITS	= "counts"
ENTRY_NAME	= "Memory dump segment"
COMMENTS   1. Noise count	= "Valid data for packet type 2. Filler data for packet type   for packet type 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= MEMDUMP_SEG
FIELD_FORMAT	= "I*860"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "6880 bits, unsigned"
RANGE	= "N/A"
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "MEMDUMP_SEG"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "UNK"
ENTRY_NAME	= "Packet checksum"
COMMENTS	= "Valid data for packet type 1, 2, and 3."
ALIAS	= "N/A"
AUTHOR	= "Jester"
ENTRY_TYPE	= "ELEMENT"
DATE_CREATED	$=12 / 17 / 90$
DATE_MODIFIED	$=06 / 11 / 92$
FIELD_NAME	= P_CHECK
FIELD_FORMAT	= "I*2"
ALLOW_BLANKS	= "N/A"
BINARY_VALUES	= "16 bit, unsigned"
RANGE	= 0:65535
DISCRETE_VALUES	= "N/A"
COMPOSITION	= "P_CHECK"
DATA_TYPE	= "INTEGER"
ACCURACY	= "UNK"
PRECISION	= "UNK"
DATA_RATE	= "once / maintenance mode packet (14 secs.)"
UNITS	= "UNK"
REFERENCE	= "MOLA Data Packet Description"
REF_AUTHOR	= "James N. Caldwell"
REF_DATE	= "09/28/90"
REF_VERSION	= "PRELIMINARY"
REFERENCE   Packet Spreads	$=\text { "Experiment Data Record (EDR) MOLA Science Telemetry }$
REF_AUTHOR	= "E. Thomas Northam"
REF_DATE	= 01/16/91
REF_VERSION	= "6.37"
REFERENCE	= "MOLA Packet Data Dictionary"
REF_AUTHOR	= "J. Bryan Blair"
REF_DATE	= 03/04/91
REF_VERSION	= "UNK"

```
REFERENCE = "Mars Observer Spacecraft Data Standards"
 REF_AUTHOR
 REF_DATE
 REF_VERSION
```


## REF_DATE

 REF_VERSION= "Mars Observer Spacecraft Data Standards" = "Kerry D. Erikson"
= 07/01/88
= "Revision A"

## Appendix C

## C. 1 MOLA AEDR Data Product SFDU Labels and Catalog Header

```
CCSD3ZF0000100000001NJPL3KS0PDSX$$INFO$$
PDS_VERSION_ID = PDS3
RECORD_TYPE = FIXED_LENGTH
FILE_RECORDS = UNK
RECORD_BYTES = 1230
LABEL_RECORDS = 4
FILE_NAME = "AA00003F.B"
^MOLA_SCIENCE_MODE_TABLE = 5
^MOLA_MAINTENANCE_MODE_TABLE = 5
DATA_SET_ID = 'MGS-M-MOLA-1-AEDR-L0-V1.0'
PRODUCT_ID = 'MOLA-AA00003F.B'
SPACECRAFT_NAME = 'MARS_GLOBAL_SURVEYOR'
INSTRUMENT_ID = 'MOLA'
INSTRUMENT_NAME = 'MARS_ORBITER_LASER_ALTIMETER'
TARGET_NAME = 'MARS'
SOFTWARE_NAME = 'BROWSER 17.1'
UPLOAD_ID = '7.6'
PRODUCT_RELEASE_DATE = 1997-258
START_TIME = 1997-212T19:10:00.000
STOP_TIME = 1997-212T19:45:00.000
SPACECRAFT_CLOCK_START_COUNT = 443588190.140
SPACECRAFT_CLOCK_STOP_COUNT = 443595246.140
PRODUCT_CREATION_TIME = 1997-258T22:45:00.000
NATIVE_START_TIME = -187606958.86449
NATIVE_STOP_TIME = -187599902.86499
MISSION_PHASE_NAME = 'ORBIT INSERTION'
ORBIT_NUMBER = 00003
PRODUCER_ID = 'MGS_MOLA_TEAM'
PRODUCER_FULL_NAME = 'DAVID E. SMITH'
PRODUCER_INSTITUTION_NAME = 'GODDARD SPACE FLIGHT CENTER'
DESCRIPTION = "This data product contains the aggregation of
 MOLA telemetry packets by orbit. All Experiment Data Record packets
 retrieved from the PDB are collected in this data product. The AEDR
 data product is put together with the Project-provided software tool
 Browser."
OBJECT = MOLA_SCIENCE_MODE_TABLE
 INTERCHANGE_FORMAT = BINARY
 ROWS = 'UNK'
 COLUMNS = 801
 ROW_BYTES = 1080
 ^STRUCTURE = "MOLASCI.FMT"
 DESCRIPTION = "This table is one of two that describe the
 arrangement of information on the Mars Orbiter Laser Altimeter (MOLA)
 Aggregated Engineering Data Record (AEDR). These Experiment Data
 Records (EDRs) are produced during the science and maintenance modes of
 instrument operation. Consequently, there are two record formats
 possible within the AEDR file. The MOLA_SCIENCE_MODE_TABLE describes
 the format of the data taken in the Science mode. The
 MOLA_MAINTENANCE_MODE_TABLE describes the format of the data taken in
 the Maintenance mode. The data are written sequentially. Each record
 will contain one packet of MOLA telemetry data. Each record contains an
 indicator of its packet type (e.g. science, maintenance, memory dump)
```

```
 in byte 11 of the file. It is by interpreting this indicator that the
 user will know which table to apply to the data. For fuller description
 of the values associated with this indicator, please see the column
 labeled PACKET_TYPE, associated with this table. The number of columns
 indicated above in the table definitions refers to the number of column
 objects described in this label. The number of actual columns in the
 entire data record, when each set of descriptors is multiplied by each
 of the seven frames, is 790."
END_OBJECT = MOLA_SCIENCE_MODE_TABLE
OBJECT = MOLA_MAINTENANCE_MODE_TABLE
 INTERCHANGE_FORMAT = BINARY
 ROWS = 'UNK'
 COLUMNS = 52
 ROW_BYTES = 1080
 ^STRUCTURE = "MOLAMNT.FMT"
 DESCRIPTION = "This table is one of two that describe the
 arrangement of information on the Mars Orbiter Laser Altimeter (MOLA)
 Aggregated Engineering Data Record (AEDR). These Experiment Data
 Records (EDRs) are produced during the science and maintenance modes of
 instrument operation. Consequently, there are two record formats
 possible within the AEDR file. The MOLA_SCIENCE_MODE_TABLE describes
 the format of the data taken in the Science mode. The
 MOLA_MAINTENANCE_MODE_TABLE describes the format of the data taken in
 the Maintenance mode. The data are written sequentially. Each record
 will contain one packet of MOLA telemetry data. Each record contains an
 indicator of its packet type (e.g. science, maintenance, memory dump)
 in byte 11 of the file. It is by interpreting this indicator that the
 user will know which table to apply to the data. For fuller description
 of the values associated with this indicator, please see the column
 labeled PACKET_TYPE, associated with this table."
END_OBJECT = MOLA_MAINTENANCE_MODE_TABLE
END
```

CCSD\$\$MARKER\$\$INFO\$\$NJPL3IF0000000000001

## C. 2 Contents of the MOLASCI.FMT File

```
OBJECT
 = COLUMN
 NAME = PACKET_CHDO
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 1
 BYTES = 150
 MINIMUM = "N/A"
 MAXIMUM = "N/A"
 DESCRIPTION = "Packet_chdo is the compressed header data object
 attached to the MOLA telemetry packet by TIS."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_ID
 DATA_TYPE = MSB_BIT_STRING
 START_BYTE = 151
 BYTES =2
 DESCRIPTION = "Packet_id constitutes one of three parts in the primary
 source information header applied by the Payload Data System (PDS) to the MOLA
```

telemetry packet at the time of creation of the packet prior to transfer frame creation."

```
OBJECT = BIT_COLUMN
 NAME = VERSION_NUMBER
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 1
 BITS = =
 MINIMUM =0
 MAXIMUM =0
 DESCRIPTION = "These bits identify Version 1 as the Source Packet
 structure. These bits shall be set to '000'."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = SPARE
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 4
 BITS =1
 MINIMUM =0
 MAXIMUM =0
 DESCRIPTION = "Reserved spare. This bit shall be set to '0'"
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = FLAG
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 5
 BITS = 1
 MINIMUM =0
 MAXIMUM =0
 DESCRIPTION = "This flag signals the presence or absence of a Secondary
 Header data structure within the Source Packet. This bit shall be set to '0'
 since no Secondary Header formatting standards currently exist for Mars Global
 Surveyor."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = ERROR_STATUS
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 6
 BITS = 3
 MINIMUM =0
 MAXIMUM = 7
 DESCRIPTION = "This field identifies in part the individual application
 process within the spacecraft that created the Source Packet data."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = INSTRUMENT_ID
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT =9
 BITS =8
 MINIMUM = 35
 MAXIMUM = 35
 DESCRIPTION = "This field identifies in part the individual application
 process within the spacecraft that created the Source Packet data. 00100011
 is the bit pattern for MOLA."
END_OBJECT = BIT_COLUMN
```




NAME	= POWER_SUPPLY_TEMPERATURE
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=165$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#4"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= 'COMPUTER_I/O_TEMPERATURE'
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=166$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#3"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_ARRAY_HEAT_SINK_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=167$
BYTES	= 1
MINIMUM	= 0
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#6"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= DIODE_ARRAY_DRIVE_ELECS_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=168$
BYTES	1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#5"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= OPTICAL_TEST_SOURCE_LED_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=169$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#8"
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= HUNDRED_MHZ_OSCILLATOR_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=170$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#7"
END_OBJECT	= COLUMN


OBJECT	= COLUMN
NAME	= START_DETECTOR_TEMPERATURE
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=171$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#10"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= OUTSIDE_DETECTOR_BOX_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=172$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#9"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASR_RADIATR_OPP_OPT_PORT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=173$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#11"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LSER_RADIATOR_OUTPUT_PORT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	= 174
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#11"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= INTERFACE_PLATE_HOT_FOOT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=175$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#14"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= RADIATION_SHEET_TRNSITION_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=176$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#13"
END_OBJECT	= COLUMN


OBJECT	= COLUMN
NAME	= ELECTRONICS_BOX_TOP_SC_THRMSTR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=177$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#16"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_BOX_HOT_FOOT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=178$
BYTES	$=1$
MINIMUM	= 0
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#15"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_28_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=179$
BYTES	= 1
MINIMUM	= 0
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#2"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= REFERENCE_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=180$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#1"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_12_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=181$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#4"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_24_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=182$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#3"


END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= PLUS_5_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=183$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#6"
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= MINUS_12_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=184$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#5"
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= LASER_THERMAL_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=185$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#8"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= MINUS_5_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=186$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#7"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= POWER_SUPPLY_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=187$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#10"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= HIGH_VOLTAGE_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=188$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$








## C. 3 Contents of the MOLAMNT.FMT File

```
OBJECT = COLUMN
 NAME = PACKET_CHDO
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 1
 BYTES = 150
 MINIMUM = "N/A"
 MAXIMUM = "N/A"
 DESCRIPTION = "Packet_chdo is the compressed header data object
 attached to the MOLA telemetry packet by TIS."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_ID
 DATA_TYPE = LSB_BIT_STRING
 START_BYTE = 151
 BYTES = 2
 DESCRIPTION = "Packet_id constitutes one of three parts in the primary
 source information header applied by the Payload Data System (PDS) to the MOLA
 telemetry packet at the time of creation of the packet prior to transfer frame
 creation."
OBJECT = BIT_COLUMN
 NAME = VERSION_NUMBER
 BIT_DATA_TYPE = UNSIGNED_INTEGER
 START_BIT = 1
 BITS = 3
 MINIMUM =0
 MAXIMUM = 7
 DESCRIPTION = "These bits identify Version 1 as the Source Packet
 structure. These bits shall be set to '000'."
END_OBJECT = BIT_COLUMN
```

```
OBJECT = BIT_COLUMN
 NAME = SPARE
 BIT_DATA_TYPE = UNSIGNED_INTEGER
 START_BIT = 4
 BITS =1
 MINIMUM =0
 MAXIMUM =0
 DESCRIPTION = "Reserved spare. This bit shall be set to '0'"
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = FLAG
 BIT_DATA_TYPE = UNSIGNED_INTEGER
 START_BIT = 5
 BITS = 1
 MINIMUM =0
 MAXIMUM =0
 DESCRIPTION = "This flag signals the presence or absence of a Secondary
 Header data structure within the Source Packet. This bit shall be set to '0'
 since no Secondary Header formatting standards currently exist for Mars Global
 Surveyor."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = ERROR_STATUS
 BIT_DATA_TYPE = UNSIGNED_INTEGER
 START_BIT = 6
 BITS = 3
 MINIMUM =0
 MAXIMUM = 7
 DESCRIPTION = "This field identifies in part the individual application
 process within the spacecraft that created the Source Packet data."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = INSTRUMENT_ID
 BIT_DATA_TYPE = UNSIGNED_INTEGER
 START_BIT = 9
 BITS =8
 MINIMUM = 35
 MAXIMUM = 35
 DESCRIPTION = "This field identifies in part the individual application
 process within the spacecraft that created the Source Packet data. 00100011
 is the bit pattern for MOLA."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SEQUENCE_CONTROL
 DATA_TYPE = LSB_BIT_STRING
 START_BYTE = 153
 BYTES = 2
 DESCRIPTION = "Sequence_control constitutes one of three parts in the
 primary source information header applied by the Payload Data System (PDS) to
 the MOLA telemetry packet at the time of creation of the packet prior to
 transfer frame creation."
OBJECT = BIT_COLUMN
```




MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#3"
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= LASER_DIODE_ARRAY_TEMPERATURE
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=167$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#6"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_DIODE_DRIVE_ELECS_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=168$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#5"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= OPTICAL_TEST_SOURCE_LED_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=169$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#8"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= HUNDRED_MHZ_OSCILLATOR_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=170$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#7"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= START_DETECTOR_TEMPERATURE
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=171$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#10"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= OUTSIDE_DETECTOR_HOUSING_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=172$


BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#9"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASR_RADIATR_OPP_OPT_PORT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=173$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#11"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LSER_RADIATOR_OUTPUT_PORT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=174$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#11"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= INTERFACE_PLATE_HOT_FOOT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=175$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#14"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= HONEYCOMB_PANEL_TEMPERATURE
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=176$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#13"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ELECTRONICS_BOX_TOP_SC_THRMSTR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=177$
BYTES	= 1
MINIMUM	= 0
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#16"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_CASE_HOT_FOOT_TEMP
DATA_TYPE	= UNSIGNED_INTEGER


START_BYTE	$=178$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux A, Ch \#15"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_28_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=179$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#2"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= REFERENCE_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=180$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#1"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_12_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=181$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#4"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_24_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=182$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#3"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= PLUS_5_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=183$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#6"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= MINUS_12_VOLT_VOLTAGE_MONITOR


DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=184$
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#5"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= LASER_THERMAL_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=185$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#8"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= MINUS_5_VOLT_VOLTAGE_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=186$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#7"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= POWER_SUPPLY_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=187$
BYTES	$=1$
MINIMUM	0
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#10"
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= HIGH_VOLTAGE_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=188$
BYTES	$=1$
MINIMUM	= 0
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#9"
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= MINUS_12_VOLT_CURRENT_MONITOR
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	= 189
BYTES	= 1
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "Mux B, Ch \#12"
END_OBJECT	$=$ COLUMN
OBJECT	$=$ COLUMN





```
 START_BYTE = 369
 BYTES =860
 ITEMS = 430
 ITEM_BYTES = 2
 MINIMUM =0
 MAXIMUM = 65535
 DESCRIPTION = "Valid data for packet type 2."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = PACKET_CHECKSUM
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 1129
 BYTES =2
 MINIMUM =0
 MAXIMUM = 65535
 DESCRIPTION = "Valid data for packet types 1, 2, and 3."
END_OBJECT = COLUMN
```


## C. 4 Contents of the MOLASCFR. FMT File

```
OBJECT = CONTAINER
 NAME = COUNTS
 START_BYTE = 1
 BYTES = 4
 REPETITIONS = 20
 ^STRUCTURE = "MOLASCCT.FMT"
 DESCRIPTION = "This container has three sub-elements (range to surface
 counts, 1st channel received pulse energy, and channel number/pulse width).
 The three sub-elements repeat for each of 20 shots."
END_OBJECT = CONTAINER
OBJECT = COLUMN
 NAME = SHOT_2_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 81
 BYTES = 1
 MINIMUM = 0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 2."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_1_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 82
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 1."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_4_LASER_TRANSMITTER_POWR
```

```
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 83
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 4."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_3_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 84
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 3."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_6_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 85
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 6."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_5_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 86
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 5."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_8_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 87
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 8."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_7_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 88
 BYTES = 1
 MINIMUM =0
```

```
 MAXIMUM =255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 7."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_10_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE =89
 BYTES = 1
 MINIMUM = 0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 10."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_9_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE =90
 BYTES = 1
 MINIMUM =0
 MAXIMUM =255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 9."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_12_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 91
 BYTES = 1
 MINIMUM = 0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 12."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_11_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 92
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 11."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_14_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 93
 BYTES = 1
 MINIMUM =0
 MAXIMUM =255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 14."
END_OBJECT = COLUMN
```

```
OBJECT = COLUMN
 NAME = SHOT_13_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 94
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 13."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_16_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 95
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 16."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_15_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE =96
 BYTES = 1
 MINIMUM = 0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 15."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_18_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 97
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 18."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_17_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 98
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 17."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_20_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
```

```
 START_BYTE =99
 BYTES = 1
 MINIMUM =0
 MAXIMUM =255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 20."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SHOT_19_LASER_TRANSMITTER_POWR
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 100
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "Transmitted laser pulse energy level. Energy reading for
 LASER transmit power for shot 19."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ENCODER_BITS_1
 DATA_TYPE = MSB_BIT_STRING
 START_BYTE = 101
 BYTES = 2
 DESCRIPTION = "This first container includes encoder start and stop bit
 values from Shots 1-4"
OBJECT = BIT_COLUMN
 NAME = SHOT_2_ENC
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 1
 BITS = 4
 MINIMUM = 0
 MAXIMUM = 15
 DESCRIPTION = "The encoder stop and start bits of the first channel to
 receive laser returned pulse energy for shot 2. Bits 1 and 2 are encoder start
 bits; bits 3 and 4 are encoder stop bits."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = SHOT_1_ENC
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 5
 BITS = 4
 MINIMUM = 0
 MAXIMUM = 15
 DESCRIPTION = "The encoder stop and start bits of the first channel to
 receive laser returned pulse energy for shot 1. Bits 5 and 6 are encoder start
 bits; bits 7 and 8 are encoder stop bits."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = SHOT_4_ENC
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT =9
 BITS =4
 MINIMUM =0
 MAXIMUM = 15
 DESCRIPTION = "The encoder stop and start bits of the first channel to
```

receive laser returned pulse energy for shot 4. Bits 9 and 10 are encoder start bits; bits 11 and 12 are encoder stop bits."

END_OBJECT	$=$ BIT_COLUMN
OBJECT	$=$ BIT_COLUMN

NAME = SHOT_3_ENC
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER

START_BIT $=13$
BITS $=4$
MINIMUM $=0$
MAXIMUM $=15$
DESCRIPTION $=$ "The encoder stop and start bits of the first channel to receive laser returned pulse energy for shot 3 . Bits 13 and 14 are encoder start bits; bits 15 and 16 are encoder stop bits."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = ENCODER_BITS_2
DATA_TYPE = MSB_BIT_STRING
START_BYTE = 103
BYTES $=2$
DESCRIPTION = "This second container includes encoder start and stop bit values from Shots 5-8"
OBJECT = BIT_COLUMN

NAME = SHOT_6_ENC
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START BIT $=1$
BITS $=4$
MINIMUM $=0$
MAXIMUM $=15$
DESCRIPTION $=$ "The encoder stop and start bits of the first channel to receive laser returned pulse energy for shot 6 . Bits 1 and 2 are encoder start bits; bits 3 and 4 are encoder stop bits"
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = SHOT_5_ENC
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT $=5$
BITS $=4$
MINIMUM $=0$
MAXIMUM $=15$
DESCRIPTION $\quad=$ "The encoder stop and start bits of the first channel to receive laser returned pulse energy for shot 5. Bits 5 and 6 are encoder start bits; bits 7 and 8 are encoder stop bits."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = SHOT_8_ENC
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
START_BIT =9
BITS $=4$
MINIMUM $=0$
MAXIMUM $=15$
DESCRIPTION $=$ "The encoder stop and start bits of the first channel to receive laser returned pulse energy for shot 8. Bits 9 and 10 are encoder start bits; bits 11 and 12 are encoder stop bits."

END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_7_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=13$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
receive laser returned pulse energy for shot 7 . Bits 13 and 14 start bits; bits 15 and 16 are encoder stop bits."	
END_OBJECT	= BIT_COLUMN
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ENCODER_BITS_3
DATA_TYPE	= MSB_BIT_STRING
START_BYTE	$=105$
BYTES	$=2$
DESCRIPTION   values from Shots	```= "This third container includes encoder start and stop bit 9-12"```
OBJECT	= BIT_COLUMN
NAME	= SHOT_10_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=1$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive laser retu start bits; bits 3	$=$ "The encoder stop and start bits of the first channel to urned pulse energy for shot 10 . Bits 1 and 2 are encoder and 4 are encoder stop bits"
END_OBJECT = BIT_COLUMN	
OBJECT	= BIT_COLUMN
NAME	= SHOT_9_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=5$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION   receive laser retu   bits; bits 7 and 8	= "The encoder stop and start bits of the first channel to rned pulse energy for shot 9. Bits 5 and 6 are encoder start are encoder stop bits."
END_OBJECT = BIT_COLUMN	
OBJECT = BIT_COLUMN	
NAME	= SHOT_12_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	9
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION   receive laser retu start bits; bits 11	= "The encoder stop and start bits of the first channel to urned pulse energy for shot 12. Bits 9 and 10 are encoder 11 and 12 are encoder stop bits."
END_OBJECT	= BIT_COLUMN


OBJECT	= BIT_COLUMN
NAME	= SHOT_11_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=13$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for s 5 and 16 are encoder st
END_OBJECT	= BIT_COLUMN
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ENCODER_BITS_4
DATA_TYPE	= MSB_BIT_STRING
START_BYTE	$=107$
BYTES	$=2$
DESCRIPTION   from Shots 1	= "This fourth containe
OBJECT	= BIT_COLUMN
NAME	= SHOT_14_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=1$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for sh and 4 are encoder stop
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_13_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=5$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for sh and 8 are encoder stop
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_16_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=9$
BITS	$=4$
MINIMUM	= 0
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for sh 1 and 12 are encoder st
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_15_ENC


BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	= 13
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for s 5 and 16 are encoder st
END_OBJECT	= BIT_COLUMN
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= ENCODER_BITS_5
DATA_TYPE	= MSB_BIT_STRING
START_BYTE	$=109$
BYTES	$=2$
DESCRIPTION   from Shots 1	= "This fifth container
OBJECT	= BIT_COLUMN
NAME	= SHOT_18_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=1$
BITS	$=4$
MINIMUM	0
MAXIMUM	$=15$
DESCRIPTION   receive lase start bits;	= "The encoder stop and urned pulse energy for and 4 are encoder stop
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_17_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=5$
BITS	$=4$
MINIMUM	0
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for sh and 8 are encoder stop
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_20_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	$=9$
BITS	$=4$
MINIMUM	$=0$
MAXIMUM	$=15$
DESCRIPTION receive lase start bits;	= "The encoder stop and urned pulse energy for sho 1 and 12 are encoder st
END_OBJECT	= BIT_COLUMN
OBJECT	= BIT_COLUMN
NAME	= SHOT_19_ENC
BIT_DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BIT	= 13




```
OBJECT = COLUMN
 NAME = CH_1_1ST_HALF_FRM_THRSHLD_SET
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 113
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The active channel threshold settings in the current
 frame. The setting of the Channel 1 threshold sampled for the first 10 shots
 in the frame"
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_2_1ST_HALF_FRM_THRSHLD_SET
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 114
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The active channel threshold settings in the current
 frame. The setting of the Channel 2 threshold sampled for the first 10 shots
 in the frame"
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_3_1ST_HALF_FRM_THRSHLD_SET
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 115
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The active channel threshold settings in the current
 frame. The setting of the Channel 3 threshold sampled for the first 10 shots
 in the frame"
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_4_1ST_HALF_FRM_THRSHLD_SET
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 116
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The active channel threshold settings in the current
 frame. The setting of the Channel 4 threshold sampled for the first 10 shots
 in the frame"
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_1_2ND_HALF_FRM_THRSHLD_SET
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 117
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The active channel threshold settings in the current
 frame. The setting of the Channel 1 threshold sampled for the last 10 shots
 in the frame"
```

END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= CH_2_2ND_HALF_FRM_THRSHLD_SET
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=118$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "The active channel threshold settings in the current
frame. The setting in the frame"	of the Channel 2 threshold sampled for the last 10 shots
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= CH_3_2ND_HALF_FRM_THRSHLD_SET
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	= 119
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "The active channel threshold settings in the current
frame. The setting in the frame"	of the Channel 3 threshold sampled for the last 10 shots
END_OBJECT	$=$ COLUMN
OBJECT	= COLUMN
NAME	= CH_4_2ND_HALF_FRM_THRSHLD_SET
DATA_TYPE	= UNSIGNED_INTEGER
START_BYTE	$=120$
BYTES	$=1$
MINIMUM	$=0$
MAXIMUM	$=255$
DESCRIPTION	= "The active channel threshold settings in the current
frame. The setting   in the frame"	of the Channel 4 threshold sampled for the last 10 shots
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= RANGE_DELAY
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	= 121
BYTES	$=2$
MINIMUM	= 0
MAXIMUM	$=65535$
DESCRIPTION the previous data (bits 0-7) of the	= "Current frame range gate delay value (DELAY) as set from frame. B[0] : Bits 3 - 0 are bits 11 - 8 and B[1] : LSByte 12 bit Range Delay setting for this frame."
END_OBJECT	= COLUMN
OBJECT	= COLUMN
NAME	= RANGE_WIDTH
DATA_TYPE	= MSB_UNSIGNED_INTEGER
START_BYTE	$=123$
BYTES	$=2$
MINIMUM	$=0$
MAXIMUM	$=4096$
DESCRIPTION   the previous data	= "Current frame range gate window or width; set at end of frame. B[0] : Bits 3-0 are bits 11 - 8 and B[1] : LSByte

```
 of the 12 bit Range Gate Window setting for this frame."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ALGORITHM_STATUS_MIN_HITS
 DATA_TYPE = MSB_INTEGER
 START_BYTE = 125
 BYTES = 1
 MINIMUM = -32768
 MAXIMUM = 32767
 DESCRIPTION = "The minimum shot hit count value required for a matched
 filter channel to trigger; MIN_HITS value set in algorithm from the previous
 data frame."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SOFTWARE_STATUS
 DATA_TYPE = MSB_BIT_STRING
 START_BYTE = 126
 BYTES = 1
 DESCRIPTION = "Two of values reflecting the operation of the flight
 software tracking algorithm. The frame counter value and the first channel
 triggering at or above the minimum hit count are set from the previous data
 frame tracking algorithm operation. Frame counter (Frame_ctr) value from
 previous frame's tracking algorithm is in MS 4 bits; MIN_HITS trigger channel
 from previous frame is in LS 4 bits."
OBJECT = BIT_COLUMN
 NAME = FRAME_COUNTER
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 1
 BITS =4
 DESCRIPTION = "The frame counter value is set from the previous data
 frame tracking algorithm operation. Frame counter (Frame_ctr) value from
 previous frame's tracking algorithm is in MS 4 bits (7 - 4) of Software status.
 Bits 7 - 4 are bits 3 - 0 of frame counter."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = TRIGGER_CHANNEL
 BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BIT = 5
 BITS =4
 DESCRIPTION = "The first channel triggering at or above the minimum hit
 count is set from the previous data frame tracking algorithm operation.
 MIN_HITS trigger channel from previous frame is in LS 4 bits (0 - 3) of
 Software status. Bit 0 = Channel 1; Bit 1 = Channel 2; Bit 2 = Channel 3; Bit
 3 = Channel 4"
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_1_1ST_HALF_FRAME_BKGRND_CN
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 127
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The background energy or noise count levels for channel
```

```
 1 first half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a
 half-frame of current frame, 5.3 bit format. Plog base 2 of background count
 summed over 1st 10 shots of frame for channel 1."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_2_1ST_HALF_FRAME_BKGRND_CN
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 128
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The background energy or noise count levels for channel
 2 first half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a
 half-frame of current frame, 5.3 bit format. Plog base 2 of background count
 summed over 1st 10 shots of frame for channel 2."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_3_1ST_HALF_FRAME_BKGRND_CN
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 129
 BYTES = 1
 MINIMUM =0
 MAXIMUM =255
 DESCRIPTION = "The background energy or noise count levels for channel
 3 first half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a
 half-frame of current frame, 5.3 bit format. Plog base 2 of background count
 summed over 1st 10 shots of frame for channel 3."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_4_1ST_HALF_FRAME_BKGRND_CN
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 130
 BYTES = 1
 MINIMUM =0
 MAXIMUM = 255
 DESCRIPTION = "The background energy or noise count levels for channel
 4 first half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a
 half-frame of current frame, 5.3 bit format. Plog base 2 of background count
 summed over 1st 10 shots of frame for channel 4."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_1_2ND_HALF_FRAME_BKGRND_CN
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 131
 BYTES = 1
 MINIMUM = 0
 MAXIMUM = 255
 DESCRIPTION = "The background energy or noise count levels for channel
 1 second half-frame. Pseudo log value of NOISE(1, 2, 3, 4) at the end of a
 half-frame of current frame, 5.3 bit format. Plog base 2 of background count
 summed over last }10\mathrm{ shots of frame for channel 1."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CH_2_2ND_HALF_FRAME_BKGRND_CN
```



## C. 5 Contents of the MOLASCCT . FMT File

```
OBJECT = COLUMN
 NAME = RANGE_TO_SURFACE_TIU_CNTS
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 START_BYTE = 1
 BYTES =2
 DESCRIPTION = "The laser shot surface ranging measurement in Timing
 Interval Unit (TIU) counts. The least significant 16 bits of TIU (LSTIU),
 stored for every shot. B[0] = Bits 15-8 of TIU reading; B[1] = Bits 7-0 of
 TIU reading."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = FIRST_CH_RCVD_PULSE_ENRGY
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 3
 BYTES = 1
 DESCRIPTION = "The level of return, reflected energy as received by the
```

```
 first channel and matched filter to trigger. Lowest numbered non-zero energy
 reading for each shot."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CHANNEL_NUMBER_PULSE_WIDTH
 DATA_TYPE = UNSIGNED_INTEGER
 START_BYTE = 4
 BYTES = 1
 DESCRIPTION = "The number of the first channel to trigger and the pulse
 width of the returned energy. Bits 8-7 : channel number - 1; bits 6-1: pulse
 width"
END_OBJECT = COLUMN
```

