Mars exploration

Michael H. Carr* \& J ames Garvin \dagger

*US Geological Survey, M enlo Park, California 94025, USA
†CodeSR, NASA H eadquarters, Washington DC 20546, U SA
An international flotilla of spacecraft are to be sent to Mars over the next decade in an effort to understand the planet's geology and climate history, and to determine whether some form of life ever started there. At least two spacecraft will be sent at each launch opportunity, and at times up to four spacecraft may be operating simultaneously at the planet.

The exploration of M ars is an international endeavour involving many nations. The United States has recently reaffirmed its long-term commitment to M ars exploration, the European Space Agency is set to launch several spacecraft to the planet in the next few years, Japan has a spacecraft (Nozomi) en route, and other countries are making substantial commitments to the effort. This global interest stems from a variety of causes. M ars is the most Earth-like of the other planets in our Solar System. Like the Earth, it has had a varied geological and climatological history ${ }^{1}$. Most of the planetary processes familiar to us here on Earth have apparently operated also on Mars, although under very different conditions, and perhaps at different scales and rates. Of particular importance is that M ars is the only planet in our Solar System, other than Earth, where liquid water has had a significant role in the evolution of the surface ${ }^{2}$. This fact, together with indications that M ars' climate may have been more Earthlike in the past ${ }^{3}$, has led to speculation that some form of indigenous life could have developed there ${ }^{4}$, or that the planet may have been colonized successfully by terrestrial life as a result of interplanetary transfer of meteorites. These possibilities have been further stimulated by the finding of enigmatic structures and mineralogical relations in martian meteorites, which have been interpreted as possibly of biological origin ${ }^{6}$. An additional stimulus to M ars exploration is that it will surely be the first planet outsidethe Earth-M oon system to be visited by humans.

Strategic issues

While the long-term prospects for M ars exploration may includemanned missions, the present exploration strategy is robotic and largely science driven, although constrained, of course, by the practicalities of budgets, schedules and technical feasibility. Determination of many envi ronmental factors relevant to human exploration are, however, encompassed in thesciencegoals. In recent yearstheU nited States has adopted an exploration strategy informally referred to as faster, better and cheaper. It involves launching to M arsmany small, relativel y low-costmissions, with narrowly focused science objectives, rather than large, costly complex missions with comprehensive sciencegoals. The intent has been to drive down costs and to distribute risk across several missions so that a single failure will not catastrophically disrupt the whole programme. The strategy was adopted by the US M ars Program after the loss of M arsO bserver in 1993. Beforethistime, planetary missions had grown so costly and complex that only one mission could belaunched each decade. In contrast, sinceadopting the faster-better-cheaper strategy, the United States has
launched five missions to Mars alone. The strategy has, however, had only mixed success. Although Pathfinder and Mars Global Surveyor were enormously successful, two M arsspacecraft werelost at M arsin 1999, probably because costs were so reduced that unacceptably high risks were taken. Despite the two failures, multiple, small missions still form the basis of the US strategic plan for Mars, although, in light of the failures, more attention is being paid to containing risks.

Theorbital motionsof Earth and M arscauseopportunities to launch spacecraft to M ars to recur every 26 months. The United States plans to launch at least one, and sometimes two, spacecraft to the planet at every opportunity for at least the next decade. In addition, the European Space Agency plans a launch in 2003 and France and Italy are planning to launch vehicles to the planet later within the decade, as described below. Thus, theexploration of M arsis truly international. Strategic planning meetings have multinational representation, most payloads are international, and some missions may be dependent on another agency for someessential element, such as telecommunications. Information on the various national plans is exchanged through the International M arsWorking Group with representation from 11 nations.

Thethree basic scienceelements of M ars exploration are searching for evidencefor past or presentlife, elucidatingthe evolution of the solid planet, and determining the climate history. Although the search for lifeis a primary objective, it entails high risk in that there may never have been any biological activity on the planet. Thus, the prudent strategy is, while pursuing the search for life, to continue to address themore general objectives concerning theevolution of the planet and itsatmosphere. M arsisa very diverseplanet with an arearoughly the sameastheland area of theEarth. Expectationsarethat if lifeever evolved on the planet, or if there is life there today, the evidence will be preserved only in rare locations where conditions for fossil preservation or for sustaining life are met. The search-for-life strategy is, therefore, to first map the planet globally from orbit in an attempt to better understand what is whereand to search for locationswherewater, warmth and nutrientsmay havebeen available to support life. The global data will also enableus to reconstruct the broad outlines of the geological and climate history. The next step is to make more detailed observationsoftargetsof interest both from orbit and on the ground. Finally, armed with theglobal and local knowledge, sites will be picked for comprehensive in situ life-detection experiments and sample-return missions. Meanwhile, experiments addressing objectives less directly concerned with life detection, such as achieving a better understanding of the circulation of the atmosphere or the structure of the

Figure 1 Envisaged mission sequence. a, Cartoon showing the different types of spacecraft to be launched to Mars in the next decade. The dates indicate the year the spacecraft is launched. \mathbf{b}, The bars indicate the times that different spacecraft are expected to be operating at Mars (CNES and ASI are respectively the French and Italian space agencies).
interior, will be interleaved with the other missions. The strategy thus allows different high-priority investigations to be undertaken in parallel.

Oneof themain issues in thelong-rangestrategic plan is when to return samples. Chemical and isotopic measurements can typically be done in terrestrial laboratories with precisions and sensitivities that are orders of magnitude better than are possible in situ. Other techniques, such as precise age determination and detection of microfossils, are so complicated and require such intricate sample preparation asto beimpractical on a distant planet in theforeseeable future. M oreover, it is impossibleto know a priori what arethemost critical measurementsto makein situ, and how best to makethem. In contrast, having samples here on Earth allows the full analytical capability of the science community to beapplied to them. Themeasurementstrategy can shift in responseto previous analytical results, and new techniques can be developed, as suggested by the samples themselves. M any researchersbelievethat thecrucial questionsof the age of surface materials, the nature of changes in climate, and whether lifeever aroseon the planet will not beanswered definitively until wehavehereon Earth a well documented set of samplesthat are representative of the planet's variety. But sample return is expensive and technically challenging. Several new capabilities must be
developed, such as autonomouslaunch from themartian surfaceand rendezvous in M ars orbit. The costs of developing these capabilities must be spread over several years. M oreover, it is argued that our knowledge of M ars is currently insufficient to know where to go to collect the samples that are most likely to resolve the question of whether there has ever been life on the planet. Preservation of fossils or evidence of biological activity requires special conditions; if there islifetoday, it islikely to befound only in verylocal niches. Becausewe arelikely to get samplesfrom only a few places, it is argued, weshould bechoosethem particularly carefully. As a result of thesetechnological and scientificchallenges, asample return mission is unlikelyto be launched before2010, despiteitsimportance.

Another argument raised against an early sample return isthat if lifeexists on M arstoday it could present a hazard to terrestrial lifeon Earth ${ }^{8}$. Almost everyone who has examined this problem has concluded that the chances that returned samples present a hazard is extremely small. After all, numerous martian meteorites fall on the Earth every year. Nevertheless, we cannot prove that the probability that the samples are harmful is zero. Accordingly, any sample returned to Earth must either be sterilized or returned in such a manner that therisk of inadvertent releaseis extremely low. Sterilization undermines the rationale for the samples, as in the process the
materials of most interest are likely to be altered or destroyed. Thus, thefocuson sample return studies has been on designing systems to return samples to Earth in sealed containers that would be opened only in stringently controlled laboratory conditions ${ }^{9}$. Because of such issues of back contamination, somebiologists haveargued that, rather than returning samples, weshould concentrateon developing sophisticated life-detection techniques that could be used at M ars, thereby by-passing the contentious problems of containment and hazard assessment.

The next decade

The next decade will be an active one for Mars exploration. As indicated above, missions will be sent to M ars at every 26-month opportunity, and on most opportunities there will be multiple launches. Figure 1 shows the currently envisaged mission sequence. The missions up to the 2005 launch opportunity are being implemented and, barring unforeseen circumstances, will belaunched as indicated. Missions beyond 2005 are less certain. Oneconsideration in the US strategy that was revised after the failures in 1999 was to have, where possible, orbiter missions succeed each other every four years, and likewise with lander missions. This was to enable lessons learned from onemission to be incorporated into a similar mission downstream. Thus, orbiter missions areto belaunched by theUnited States in 2001, 2005 and 2009, whereas lander missions are to be launched in 2003, 2007 and 2011. Theearly non-USmissions, having been started before the revised strategy, are interleaved with the alternatingorbiter and lander missions.

M ars Global Surveyor was injected into M ars orbit in September 1997, and has been returning data ever since. It has imaged a few per cent of the surface at resolutions of $1.5-8 \mathrm{~m} \mathrm{pixel}^{-1}$ (ref. 10), determined elevations of the whole planet at a spatial resolution of a few hundred metres and a vertical resolution of better than 1 m (ref. 11), and obtained thermal infrared spectra of the entire surface with a spatial resolution of 3 km (ref. 12). It has also determined thegravity field to degree and order of roughly 100 (ref. 13) and discovered large crustal magnetic anomalies which indicatethat early M arsoncehad a strong magnetic field ${ }^{14}$. The spacecraft is currently making detailed observations of potential landing sites for subsequent missions, and in particular the 2003 rovers. It also now seems likely that Mars Global Surveyor will survive long enough to act as a data relay for other missions.

The next Mars mission is Mars Odyssey (2001), which will be placed in M arsorbit in October 2001. It carries threeexperiments. A gamma ray spectrometer will map the elemental composition of the surface globally at a spatial resolution of $250-300 \mathrm{~km}$. A thermal emission imaging system will acquire infrared spectral images with a spatial resolution of 100 m of locationson thesurface of special interest. This experiment is of particular interest for choosing landing sites for futuremissions as it may locate chemical anomalies such as might be caused by hydrothermal activity. The third experiment, M ARIE (for M ars Radiation Environment Experiment), is intended to characterize the galactic cosmic radiation environment around Mars, in anticipation of engineering design choices that must be made for future human missions to the planet. Odyssey is also designed to act as a relay for theroversto belaunched in 2003.

Several missions will be launched to M ars in 2003. The United States will launch two M ars Exploration Rovers. Thesewill soft land on thesurfacein air bagslikeM ars Pathfinder did in 1997, but unlike Pathfinder, the rovers will beindependent of the landing system and befreeto moveaway from thelandingpoint. Thelandersareexpected to survive on the surface for at least 90 days, during which they will perform a variety of measurements on the local rocks and soils. The process of choosingand characterizingthelandingsitesiswell underway. Candidates include the floor of the canyons, floors of large craters thought to have formerly contained lakes, the edge of the ancient heavily cratered highlands, and a region where M ars Global Surveyor detected coarse-grained haematite (an iron mineral
believed to have been precipitated from water) at the surface. Also in 2003, the European Space Agency is scheduled to launch an orbiter called Mars Express. This will carry a German high-resolution camera capable of mapping much of the planet in stereo and colour. It will al so carry a French near-infrared spectrometer for determining surface mineralogy. In addition, a joint Italian/U S radar surface sounder will attempt to detect liquid water down to depths of $\sim 5 \mathrm{~km}$ below the surface. Other experiments will make measurements on the upper atmosphere and characterize the interaction between the planet and the solar wind. These plasma experiments will complement those of the Japanese spacecraft N ozomi, which will be in orbit around M ars at the sametime. M ars Express will al so deploy to the surfacea small UK-builtlander, called Beagle2. It has a camera and a variety of detectors to measure the composition of the surface and atmosphere. Thus, 2004 will be a banner year for M ars exploration, with threelanderson the surface and at least two and possibly four spacecraft in orbit, as the Odyssey and Mars Global Surveyor spacecraft could both survivethat long and act as relay links.

In 2005, the US plans to launch a M ars Reconnaissance Orbiter. The payload for theorbiter has yet to be chosen, but it will probably include an atmospheric sounder designed to acquire multiple vertical profiles over one martian year, in order to characterize the atmosphere'scirculation. Other likel y instruments are a camera with resolution of tens of centimetres, and a visible-to-near-infrared spectrometer, both intended for usein identifying and characterizing futurelandingsites. Thereisal so likely to bearadar sounder to detect subsurface water, but with a greater sensitivity and spatial resolution than that to beflown on M arsExpress.

Beyond 2005, plans are much less certain. Likely possibilities includea 2007 launch of aFrench experiment to placefour netlanders on the martian surface. Their main purpose will be to establish a seismic network to determinetheinternal structureof theplanet, but they will also have imaging and geochemical sensors. At the same time, theUnited States plansto send additional roversto the surface, to do longer-range exploration than thosesent previously and to test someof thetechnologiesneeded for samplereturn. TheU nited States will also request proposals from the science community for a small mission, termed a Scout, that could fill gaps left in the main programme. A joint US/Italian telecommunications satellite to support the variousvehicles on the surfaceisal so a possibility. W hat happens after 2007 will depend on budgets, on technological developments and also on what has been discovered about M ars in the intervening years. As indicated above, samplereturn is a high priority. By 2007 we should have acquired most of the orbital observations needed to select potentially fruitful landing sites, and have made enough measurements on the surfaceto providetheground data required to interpret with confidence the orbiter remote-sensing data. We will also haveconsiderable experiencelanding and operating vehicles on the surface. Thus, if we continue to maintain the 4 -year spacing between landed missions, a 2011 launch of a sample-return mission isa possibility.

Beyond the next decade

What we do in the second decade of the millennium will depend on what we discover during thenext few years, what funds areavailable, and whether weareany closer to committingto theexploration of the planet with people. Perhaps the most important factor governing what followswill bewhether lifeis unambiguously detected either in martian meteorites, returned samples or by in situ experiments. Should life be detected, then the focus of subsequent exploration would surely beon characterizing that life and determining how and when it evolved. But the chance that life will be unambiguously detected is low. And whether or not it is detected, the desire for samples will remain high. We will want to acquire samples of differ-ent-aged igneous rocks, hydrothermal deposits, evaporites, lake beds, ancient channel sediments, deposits downstream of recently formed gullies, and so forth. The samples will be needed to further
the search for life and to acquiremore definitive information on the timing and nature of geological and climatological events. Long-lived rovers that can travel hundreds of kilometres with sophisticated geochemical and life-detection payloadswill no doubt beadvocated in order to sampleawidevariety of geological units and possible biological environments. Such missions could be coupled with a capability for returning samplesso that wecan obtain a suiteof samples representative of the planet's variety. Suggestions have also been advanced to drill into the surface to reach depths whereliquid water might be stable today, and where life might still survive, as it does deep within the Columbia River basalts in eastern Washington ${ }^{15}$. Drill cores from the polar layered terrains would beof particular interest for unravelling the recent climate history. Other possibilities that have been suggested include low-flying balloons and aircraft to detect local subsurface water and thermal anomalies, and deploying global seismic and meteorological networks. M ost of these suggestions do not readily fit within the faster-better-cheaper mould. But if we are to have a long-term exploration programme, we will need larger, more complicated missions than are currently being flown.

A major issue in the long-term plan is the role of human exploration. Opinions differ markedly on the role of humans. Some argue that humans should not set foot on the planet until it has been demonstrated that there is no life on M ars today. Humans would inevitably be accompanied by terrestrial microbial life that might compete with any indigenous life, thereby destroying or altering it. Humans could also return martian microbes to Earth, and so put someterrestrial lifeat risk. Othersargue that such concerns areoverstated, that the chances of there being life on M ars today is close to zero, and that even if there is life and it is brought back to Earth, it could not compete with our planet's terrestrial organisms, which occupy every conceivable niche. Another issue is what purpose it would serveto send peopleto M ars. Theenormouscost of transporting people simply to perform science experiments and fieldwork
hardly seems justifiable. For the cost of one manned mission, hundreds of robots could bedeployed all over the planet to do fieldwork, collect samples and deploy instruments. Some advocates of manned missionsassert that therationalefor human missions to M arsisreally not practical but spiritual. The will to explore is deeply rooted in human nature. Exploration lifts us abovethe humdrum concerns of food and shelter and provides us with feelings of awe, wonderment and pride. If people areultimately to go to M ars, it may well be such considerations that drive us there. But human exploration is a long way off. M eanwhile, there is an entire planet to exploreand possibly an entirely new biology to discover.

1. Kieffer, H. H., Jakosky, B. M., Snyder, C. W. \& M atthews, M. S. (eds) M ars (Univ. Arizona Press, Tucson, 1992).
2. Carr, M. H. Water on M ars (Oxford Univ. Press, New York, 1996).
3. Haberle, R. M. Early M ars climatemodels. J. Geophys. Res. 103, 28467-28479 (1998).
4. M CKay, C. P., M ancinelli, R. L. \& Stoker, C. R. in M ars(edsKieffer, H. H., Jakosky, B. M ., Snyder, C. W. \& M atthews, M. S.) 1234-1245 (Univ. Arizona Press, Tucson, 1992).
5. Gladman, B. J., Burns, J. A., Duncan, M., Lee, P. \& Levison, H. F. Theexchange of impact ejecta between terrestrial planets. Science 271, 1387-1392 (1996).
6. M cKay, D. S. et al. Search for past life on M ars: possiblerelict biogenic activity in martian meteorite ALH 84001 . Science 273, 924-930 (1996).
7. National Aeronautics and SpaceAdministration. An Exobiological Strategy for M ars Exploration Report No. NASA SP-530 (NASA, 1995).
8. National Research Council. M ars SampleReturn. Issues and Recommendations (National Academy Press, Washington DC, 1997).
9. National Aeronautics and SpaceAdministration. M ars SampleH andling and Requirements Panel Final Report. Report No. NASA/TM -1999-209145 (NASA, 1999).
10. M alin, M . C. \& Edgett, K. S. M ars Orbiter Camera: thefirst three years. J. Geophys. Res. (in the press).
11. Smith, D. E. et al. Theglobal topography of M ars and implications for surface evolution. Science 231, 1495-1503 (1999).
12. Christensen, P. R., Bandfield, J. L., Smith, M. D., M aliton, V. E. \& Clark, R. Identification of a basaltic component on themartian surface from Thermal Emission Spectrometer data. J. Geophys. Res. 105, 9609-9621 (2000).
13. Zuber, M. T. et al. Internal structure and early thermal evolution of M ars from M ars Global Surveyor topography and gravity. Science 287, 1788-1792 (2000).
14. Acuna, M. H. et al. M agnetic field and plasma observations at M ars: initial results of the M ars Global Surveyor mission. Science 279, 1676-1689 (1999).
15. Stevens, T. O. \& McKinley, J. P. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450-454 (1995).
